Structural highlights
Function
[PRIM_BPT7] Synthesizes short RNA primers for DNA replication. Unwinds the DNA at the replication forks and generates single-stranded DNA for both leading and lagging strand synthesis. The primase synthesizes short RNA primers on the lagging strand that the polymerase elongates using dNTPs.[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
DNA primases are template-dependent RNA polymerases that synthesize oligoribonucleotide primers that can be extended by DNA polymerase. The bacterial primases consist of zinc binding and RNA polymerase domains that polymerize ribonucleotides at templating sequences of single-stranded DNA. We report a crystal structure of bacteriophage T7 primase that reveals its two domains and the presence of two Mg(2+) ions bound to the active site. NMR and biochemical data show that the two domains remain separated until the primase binds to DNA and nucleotide. The zinc binding domain alone can stimulate primer extension by T7 DNA polymerase. These findings suggest that the zinc binding domain couples primer synthesis with primer utilization by securing the DNA template in the primase active site and then delivering the primed DNA template to DNA polymerase. The modular architecture of the primase and a similar mechanism of priming DNA synthesis are likely to apply broadly to prokaryotic primases.
Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis.,Kato M, Ito T, Wagner G, Richardson CC, Ellenberger T Mol Cell. 2003 May;11(5):1349-60. PMID:12769857[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kong D, Griffith JD, Richardson CC. Gene 4 helicase of bacteriophage T7 mediates strand transfer through pyrimidine dimers, mismatches, and nonhomologous regions. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2987-92. PMID:9096333
- ↑ Zhang H, Lee SJ, Zhu B, Tran NQ, Tabor S, Richardson CC. Helicase-DNA polymerase interaction is critical to initiate leading-strand DNA synthesis. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9372-7. doi:, 10.1073/pnas.1106678108. Epub 2011 May 23. PMID:21606333 doi:http://dx.doi.org/10.1073/pnas.1106678108
- ↑ Kulczyk AW, Akabayov B, Lee SJ, Bostina M, Berkowitz SA, Richardson CC. An interaction between DNA polymerase and helicase is essential for the high processivity of the bacteriophage T7 replisome. J Biol Chem. 2012 Nov 9;287(46):39050-60. doi: 10.1074/jbc.M112.410647. Epub 2012, Sep 12. PMID:22977246 doi:http://dx.doi.org/10.1074/jbc.M112.410647
- ↑ Kato M, Ito T, Wagner G, Richardson CC, Ellenberger T. Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis. Mol Cell. 2003 May;11(5):1349-60. PMID:12769857