1ot8
From Proteopedia
Structure of the Ankyrin Domain of the Drosophila Notch Receptor
Structural highlights
Function[NOTCH_DROME] Signaling protein, which regulates, with both positive and negative signals, the differentiation of at least central and peripheral nervous system and eye, wing disk, oogenesis, segmental appendages such as antennae and legs, and muscles, through lateral inhibition or induction. Functions as a receptor for membrane-bound ligands Delta and Serrate to regulate cell-fate determination. Upon ligand activation, and releasing from the cell membrane, the Notch intracellular domain (NICD) forms a transcriptional activator complex with Su(H) (Suppressor of hairless) and activates genes of the E(spl) complex. Essential for proper differentiation of ectoderm. Fringe (fng) acts in the Golgi to determine the type of O-linked fucose on the EGF modules in N, altering the ability of N to bind with Delta (Dl). O-fut1 also has a role in modulating the interaction. Rumi acts in the endoplasmic reticulum to glucosylate the EGF modules in N, this is required for correct folding and cleavage of N.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions. Structure and stability of the ankyrin domain of the Drosophila Notch receptor.,Zweifel ME, Leahy DJ, Hughson FM, Barrick D Protein Sci. 2003 Nov;12(11):2622-32. PMID:14573873[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|