| Structural highlights
3kcg is a 3 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , , , , |
NonStd Res: | , , |
Gene: | F9 (HUMAN), SERPINC1, AT3, PRO0309 (HUMAN) |
Activity: | Coagulation factor IXa, with EC number 3.4.21.22 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
[FA9_HUMAN] Defects in F9 are the cause of recessive X-linked hemophilia B (HEMB) [MIM:306900]; also known as Christmas disease.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] Note=Mutations in position 43 (Oxford-3, San Dimas) and 46 (Cambridge) prevents cleavage of the propeptide, mutation in position 93 (Alabama) probably fails to bind to cell membranes, mutation in position 191 (Chapel-Hill) or in position 226 (Nagoya OR Hilo) prevent cleavage of the activation peptide. Defects in F9 are the cause of thrombophilia due to factor IX defect (THPH8) [MIM:300807]. A hemostatic disorder characterized by a tendency to thrombosis.[37] [ANT3_HUMAN] Defects in SERPINC1 are the cause of antithrombin III deficiency (AT3D) [MIM:613118]. AT3D is an important risk factor for hereditary thrombophilia, a hemostatic disorder characterized by a tendency to recurrent thrombosis. AT3D is classified into 4 types. Type I: characterized by a 50% decrease in antigenic and functional levels. Type II: has defects affecting the thrombin-binding domain. Type III: alteration of the heparin-binding domain. Plasma AT-III antigen levels are normal in type II and III. Type IV: consists of miscellaneous group of unclassifiable mutations.[38] [:][39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [:][60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
Function
[FA9_HUMAN] Factor IX is a vitamin K-dependent plasma protein that participates in the intrinsic pathway of blood coagulation by converting factor X to its active form in the presence of Ca(2+) ions, phospholipids, and factor VIIIa. [ANT3_HUMAN] Most important serine protease inhibitor in plasma that regulates the blood coagulation cascade. AT-III inhibits thrombin, matriptase-3/TMPRSS7, as well as factors IXa, Xa and XIa. Its inhibitory activity is greatly enhanced in the presence of heparin.[73]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Factor (f) IXa is a critical enzyme for the formation of stable blood clots, and its deficiency results in hemophilia. The enzyme functions at the confluence of the intrinsic and extrinsic pathways by binding to fVIIIa and rapidly generating fXa. In spite of its importance, little is known about how fIXa recognizes its cofactor, its substrate, or its only known inhibitor, antithrombin (AT). However, it is clear that fIXa requires extensive exosite interactions to present substrates for efficient cleavage. Here we describe the 1.7-A crystal structure of fIXa in its recognition (Michaelis) complex with heparin-activated AT. It represents the highest resolution structure of both proteins and allows us to address several outstanding issues. The structure reveals why the heparin-induced conformational change in AT is required to permit simultaneous active-site and exosite interactions with fIXa and the nature of these interactions. The reactive center loop of AT has evolved to specifically inhibit fIXa, with a P2 Gly so as not to clash with Tyr99 on fIXa, a P4 Ile to fit snugly into the S4 pocket, and a C-terminal extension to exploit a unique wall-like feature of the active-site cleft. Arg150 is at the center of the exosite interface, interacting with AT residues on beta-sheet C. A surprising crystal contact is observed between the heparin pentasaccharide and fIXa, revealing a plausible mode of binding that would allow longer heparin chains to bridge the complex.
Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex.,Johnson DJ, Langdown J, Huntington JA Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):645-50. Epub 2009 Dec 22. PMID:20080729[74]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ de la Salle C, Charmantier JL, Ravanat C, Ohlmann P, Hartmann ML, Schuhler S, Bischoff R, Ebel C, Roecklin D, Balland A, et al.. The Arg-4 mutant factor IX Strasbourg 2 shows a delayed activation by factor XIa. Nouv Rev Fr Hematol. 1993;35(5):473-80. PMID:8295821
- ↑ Suehiro K, Kawabata S, Miyata T, Takeya H, Takamatsu J, Ogata K, Kamiya T, Saito H, Niho Y, Iwanaga S. Blood clotting factor IX BM Nagoya. Substitution of arginine 180 by tryptophan and its activation by alpha-chymotrypsin and rat mast cell chymase. J Biol Chem. 1989 Dec 15;264(35):21257-65. PMID:2592373
- ↑ Green PM, Bentley DR, Mibashan RS, Nilsson IM, Giannelli F. Molecular pathology of haemophilia B. EMBO J. 1989 Apr;8(4):1067-72. PMID:2743975
- ↑ Noyes CM, Griffith MJ, Roberts HR, Lundblad RL. Identification of the molecular defect in factor IX Chapel Hill: substitution of histidine for arginine at position 145. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4200-2. PMID:6603618
- ↑ Bentley AK, Rees DJ, Rizza C, Brownlee GG. Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position -4. Cell. 1986 May 9;45(3):343-8. PMID:3009023
- ↑ Davis LM, McGraw RA, Ware JL, Roberts HR, Stafford DW. Factor IXAlabama: a point mutation in a clotting protein results in hemophilia B. Blood. 1987 Jan;69(1):140-3. PMID:3790720
- ↑ Ware J, Davis L, Frazier D, Bajaj SP, Stafford DW. Genetic defect responsible for the dysfunctional protein: factor IXLong Beach. Blood. 1988 Aug;72(2):820-2. PMID:3401602
- ↑ Sugimoto M, Miyata T, Kawabata S, Yoshioka A, Fukui H, Takahashi H, Iwanaga S. Blood clotting factor IX Niigata: substitution of alanine-390 by valine in the catalytic domain. J Biochem. 1988 Dec;104(6):878-80. PMID:3243764
- ↑ Monroe DM, McCord DM, Huang MN, High KA, Lundblad RL, Kasper CK, Roberts HR. Functional consequences of an arginine180 to glutamine mutation in factor IX Hilo. Blood. 1989 May 1;73(6):1540-4. PMID:2713493
- ↑ Attree O, Vidaud D, Vidaud M, Amselem S, Lavergne JM, Goossens M. Mutations in the catalytic domain of human coagulation factor IX: rapid characterization by direct genomic sequencing of DNA fragments displaying an altered melting behavior. Genomics. 1989 Apr;4(3):266-72. PMID:2714791
- ↑ Koeberl DD, Bottema CD, Buerstedde JM, Sommer SS. Functionally important regions of the factor IX gene have a low rate of polymorphism and a high rate of mutation in the dinucleotide CpG. Am J Hum Genet. 1989 Sep;45(3):448-57. PMID:2773937
- ↑ Liddell MB, Peake IR, Taylor SA, Lillicrap DP, Giddings JC, Bloom AL. Factor IX Cardiff: a variant factor IX protein that shows abnormal activation is caused by an arginine to cysteine substitution at position 145. Br J Haematol. 1989 Aug;72(4):556-60. PMID:2775660
- ↑ Sakai T, Yoshioka A, Yamamoto K, Niinomi K, Fujimura Y, Fukui H, Miyata T, Iwanaga S. Blood clotting factor IX Kashihara: amino acid substitution of valine-182 by phenylalanine. J Biochem. 1989 May;105(5):756-9. PMID:2753873
- ↑ Ware J, Diuguid DL, Liebman HA, Rabiet MJ, Kasper CK, Furie BC, Furie B, Stafford DW. Factor IX San Dimas. Substitution of glutamine for Arg-4 in the propeptide leads to incomplete gamma-carboxylation and altered phospholipid binding properties. J Biol Chem. 1989 Jul 5;264(19):11401-6. PMID:2738071
- ↑ Chen SH, Thompson AR, Zhang M, Scott CR. Three point mutations in the factor IX genes of five hemophilia B patients. Identification strategy using localization by altered epitopes in their hemophilic proteins. J Clin Invest. 1989 Jul;84(1):113-8. PMID:2472424 doi:http://dx.doi.org/10.1172/JCI114130
- ↑ Wang NS, Zhang M, Thompson AR, Chen SH. Factor IX Chongqing: a new mutation in the calcium-binding domain of factor IX resulting in severe hemophilia B. Thromb Haemost. 1990 Feb 19;63(1):24-6. PMID:2339358
- ↑ Taylor SA, Liddell MB, Peake IR, Bloom AL, Lillicrap DP. A mutation adjacent to the beta cleavage site of factor IX (valine 182 to leucine) results in mild haemophilia Bm. Br J Haematol. 1990 Jun;75(2):217-21. PMID:2372509
- ↑ Bertina RM, van der Linden IK, Mannucci PM, Reinalda-Poot HH, Cupers R, Poort SR, Reitsma PH. Mutations in hemophilia Bm occur at the Arg180-Val activation site or in the catalytic domain of factor IX. J Biol Chem. 1990 Jul 5;265(19):10876-83. PMID:2162822
- ↑ Miyata T, Sakai T, Sugimoto M, Naka H, Yamamoto K, Yoshioka A, Fukui H, Mitsui K, Kamiya K, Umeyama H, et al.. Factor IX Amagasaki: a new mutation in the catalytic domain resulting in the loss of both coagulant and esterase activities. Biochemistry. 1991 Nov 26;30(47):11286-91. PMID:1958666
- ↑ Sarkar G, Cassady JD, Pyeritz RE, Gilchrist GS, Sommer SS. Isoleucine397 is changed to threonine in two females with hemophilia B. Nucleic Acids Res. 1991 Mar 11;19(5):1165. PMID:1902289
- ↑ Ludwig M, Sabharwal AK, Brackmann HH, Olek K, Smith KJ, Birktoft JJ, Bajaj SP. Hemophilia B caused by five different nondeletion mutations in the protease domain of factor IX. Blood. 1992 Mar 1;79(5):1225-32. PMID:1346975
- ↑ Taylor SA, Duffin J, Cameron C, Teitel J, Garvey B, Lillicrap DP. Characterization of the original Christmas disease mutation (cysteine 206----serine): from clinical recognition to molecular pathogenesis. Thromb Haemost. 1992 Jan 23;67(1):63-5. PMID:1615485
- ↑ David D, Rosa HA, Pemberton S, Diniz MJ, Campos M, Lavinha J. Single-strand conformation polymorphism (SSCP) analysis of the molecular pathology of hemophilia B. Hum Mutat. 1993;2(5):355-61. PMID:8257988 doi:http://dx.doi.org/10.1002/humu.1380020506
- ↑ Aguilar-Martinez P, Romey MC, Schved JF, Gris JC, Demaille J, Claustres M. Factor IX gene mutations causing haemophilia B: comparison of SSC screening versus systematic DNA sequencing and diagnostic applications. Hum Genet. 1994 Sep;94(3):287-90. PMID:8076946
- ↑ Aguilar-Martinez P, Romey MC, Gris JC, Schved JF, Demaille J, Claustres M. A novel mutation (Val-373 to Glu) in the catalytic domain of factor IX, resulting in moderately/severe hemophilia B in a southern French patient. Hum Mutat. 1994;3(2):156-8. PMID:8199596 doi:http://dx.doi.org/10.1002/humu.1380030211
- ↑ Caglayan SH, Vielhaber E, Gursel T, Aktuglu G, Sommer SS. Identification of mutations in four hemophilia B patients of Turkish origin, including a novel deletion of base 6411. Hum Mutat. 1994;4(2):163-5. PMID:7981722 doi:http://dx.doi.org/10.1002/humu.1380040214
- ↑ Wulff K, Schroder W, Wehnert M, Herrmann FH. Twenty-five novel mutations of the factor IX gene in haemophilia B. Hum Mutat. 1995;6(4):346-8. PMID:8680410 doi:10.1002/humu.1380060410
- ↑ Caglayan SH, Gokmen Y, Aktuglu G, Gurgey A, Sommer SS. Mutations associated with hemophilia B in Turkish patients. Hum Mutat. 1997;10(1):76-9. PMID:9222764 doi:<76::AID-HUMU11>3.0.CO;2-X 10.1002/(SICI)1098-1004(1997)10:1<76::AID-HUMU11>3.0.CO;2-X
- ↑ Chan V, Chan VW, Yip B, Chim CS, Chan TK. Hemophilia B in a female carrier due to skewed inactivation of the normal X-chromosome. Am J Hematol. 1998 May;58(1):72-6. PMID:9590153
- ↑ David D, Moreira I, Morais S, de Deus G. Five novel factor IX mutations in unrelated hemophilia B patients. Hum Mutat. 1998;Suppl 1:S301-3. PMID:9452115
- ↑ Heit JA, Thorland EC, Ketterling RP, Lind TJ, Daniels TM, Zapata RE, Ordonez SM, Kasper CK, Sommer SS. Germline mutations in Peruvian patients with hemophilia B: pattern of mutation in AmerIndians is similar to the putative endogenous germline pattern. Hum Mutat. 1998;11(5):372-6. PMID:9600455 doi:<372::AID-HUMU4>3.0.CO;2-M 10.1002/(SICI)1098-1004(1998)11:5<372::AID-HUMU4>3.0.CO;2-M
- ↑ Wulff K, Bykowska K, Lopaciuk S, Herrmann FH. Molecular analysis of hemophilia B in Poland: 12 novel mutations of the factor IX gene. Acta Biochim Pol. 1999;46(3):721-6. PMID:10698280
- ↑ Montejo JM, Magallon M, Tizzano E, Solera J. Identification of twenty-one new mutations in the factor IX gene by SSCP analysis. Hum Mutat. 1999;13(2):160-5. PMID:10094553 doi:<160::AID-HUMU9>3.0.CO;2-C 10.1002/(SICI)1098-1004(1999)13:2<160::AID-HUMU9>3.0.CO;2-C
- ↑ Vidal F, Farssac E, Altisent C, Puig L, Gallardo D. Factor IX gene sequencing by a simple and sensitive 15-hour procedure for haemophilia B diagnosis: identification of two novel mutations. Br J Haematol. 2000 Nov;111(2):549-51. PMID:11122099
- ↑ Onay UV, Kavakli K, Kilinc Y, Gurgey A, Aktuglu G, Kemahli S, Ozbek U, Caglayan SH. Molecular pathology of haemophilia B in Turkish patients: identification of a large deletion and 33 independent point mutations. Br J Haematol. 2003 Feb;120(4):656-9. PMID:12588353
- ↑ Espinos C, Casana P, Haya S, Cid AR, Aznar JA. Molecular analyses in hemophilia B families: identification of six new mutations in the factor IX gene. Haematologica. 2003 Feb;88(2):235-6. PMID:12604421
- ↑ Simioni P, Tormene D, Tognin G, Gavasso S, Bulato C, Iacobelli NP, Finn JD, Spiezia L, Radu C, Arruda VR. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med. 2009 Oct 22;361(17):1671-5. doi: 10.1056/NEJMoa0904377. PMID:19846852 doi:10.1056/NEJMoa0904377
- ↑ Lindo VS, Kakkar VV, Learmonth M, Melissari E, Zappacosta F, Panico M, Morris HR. Antithrombin-TRI (Ala382 to Thr) causing severe thromboembolic tendency undergoes the S-to-R transition and is associated with a plasma-inactive high-molecular-weight complex of aggregated antithrombin. Br J Haematol. 1995 Mar;89(3):589-601. PMID:7734359
- ↑ Bock SC, Marrinan JA, Radziejewska E. Antithrombin III Utah: proline-407 to leucine mutation in a highly conserved region near the inhibitor reactive site. Biochemistry. 1988 Aug 9;27(16):6171-8. PMID:3191114
- ↑ Lane DA, Bayston T, Olds RJ, Fitches AC, Cooper DN, Millar DS, Jochmans K, Perry DJ, Okajima K, Thein SL, Emmerich J. Antithrombin mutation database: 2nd (1997) update. For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1997 Jan;77(1):197-211. PMID:9031473
- ↑ Koide T, Odani S, Takahashi K, Ono T, Sakuragawa N. Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc Natl Acad Sci U S A. 1984 Jan;81(2):289-93. PMID:6582486
- ↑ Chang JY, Tran TH. Antithrombin III Basel. Identification of a Pro-Leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity. J Biol Chem. 1986 Jan 25;261(3):1174-6. PMID:3080419
- ↑ Stephens AW, Thalley BS, Hirs CH. Antithrombin-III Denver, a reactive site variant. J Biol Chem. 1987 Jan 25;262(3):1044-8. PMID:3805013
- ↑ Devraj-Kizuk R, Chui DH, Prochownik EV, Carter CJ, Ofosu FA, Blajchman MA. Antithrombin-III-Hamilton: a gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity. Blood. 1988 Nov;72(5):1518-23. PMID:3179438
- ↑ Erdjument H, Lane DA, Panico M, Di Marzo V, Morris HR. Single amino acid substitutions in the reactive site of antithrombin leading to thrombosis. Congenital substitution of arginine 393 to cysteine in antithrombin Northwick Park and to histidine in antithrombin Glasgow. J Biol Chem. 1988 Apr 25;263(12):5589-93. PMID:3162733
- ↑ Erdjument H, Lane DA, Panico M, Di Marzo V, Morris HR, Bauer K, Rosenberg RD. Antithrombin Chicago, amino acid substitution of arginine 393 to histidine. Thromb Res. 1989 Jun 15;54(6):613-9. PMID:2781509
- ↑ Borg JY, Brennan SO, Carrell RW, George P, Perry DJ, Shaw J. Antithrombin Rouen-IV 24 Arg----Cys. The amino-terminal contribution to heparin binding. FEBS Lett. 1990 Jun 18;266(1-2):163-6. PMID:2365065
- ↑ Gandrille S, Aiach M, Lane DA, Vidaud D, Molho-Sabatier P, Caso R, de Moerloose P, Fiessinger JN, Clauser E. Important role of arginine 129 in heparin-binding site of antithrombin III. Identification of a novel mutation arginine 129 to glutamine. J Biol Chem. 1990 Nov 5;265(31):18997-9001. PMID:2229057
- ↑ Austin RC, Rachubinski RA, Blajchman MA. Site-directed mutagenesis of alanine-382 of human antithrombin III. FEBS Lett. 1991 Mar 25;280(2):254-8. PMID:2013320
- ↑ Perry DJ, Daly M, Harper PL, Tait RC, Price J, Walker ID, Carrell RW. Antithrombin Cambridge II, 384 Ala to Ser. Further evidence of the role of the reactive centre loop in the inhibitory function of the serpins. FEBS Lett. 1991 Jul 22;285(2):248-50. PMID:1906811
- ↑ Olds RJ, Lane DA, Boisclair M, Sas G, Bock SC, Thein SL. Antithrombin Budapest 3. An antithrombin variant with reduced heparin affinity resulting from the substitution L99F. FEBS Lett. 1992 Apr 6;300(3):241-6. PMID:1555650
- ↑ Blajchman MA, Fernandez-Rachubinski F, Sheffield WP, Austin RC, Schulman S. Antithrombin-III-Stockholm: a codon 392 (Gly----Asp) mutation with normal heparin binding and impaired serine protease reactivity. Blood. 1992 Mar 15;79(6):1428-34. PMID:1547341
- ↑ Okajima K, Abe H, Maeda S, Motomura M, Tsujihata M, Nagataki S, Okabe H, Takatsuki K. Antithrombin III Nagasaki (Ser116-Pro): a heterozygous variant with defective heparin binding associated with thrombosis. Blood. 1993 Mar 1;81(5):1300-5. PMID:8443391
- ↑ Olds RJ, Lane DA, Beresford CH, Abildgaard U, Hughes PM, Thein SL. A recurrent deletion in the antithrombin gene, AT106-108(-6 bp), identified by DNA heteroduplex detection. Genomics. 1993 Apr;16(1):298-9. PMID:8486379 doi:http://dx.doi.org/10.1006/geno.1993.1184
- ↑ Emmerich J, Vidaud D, Alhenc-Gelas M, Chadeuf G, Gouault-Heilmann M, Aillaud MF, Aiach M. Three novel mutations of antithrombin inducing high-molecular-mass compounds. Arterioscler Thromb. 1994 Dec;14(12):1958-65. PMID:7981186
- ↑ Millar DS, Wacey AI, Ribando J, Melissari E, Laursen B, Woods P, Kakkar VV, Cooper DN. Three novel missense mutations in the antithrombin III (AT3) gene causing recurrent venous thrombosis. Hum Genet. 1994 Nov;94(5):509-12. PMID:7959685
- ↑ Jochmans K, Lissens W, Vervoort R, Peeters S, De Waele M, Liebaers I. Antithrombin-Gly 424 Arg: a novel point mutation responsible for type 1 antithrombin deficiency and neonatal thrombosis. Blood. 1994 Jan 1;83(1):146-51. PMID:8274732
- ↑ van Boven HH, Olds RJ, Thein SL, Reitsma PH, Lane DA, Briet E, Vandenbroucke JP, Rosendaal FR. Hereditary antithrombin deficiency: heterogeneity of the molecular basis and mortality in Dutch families. Blood. 1994 Dec 15;84(12):4209-13. PMID:7994035
- ↑ Bruce D, Perry DJ, Borg JY, Carrell RW, Wardell MR. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn-->Asp) J Clin Invest. 1994 Dec;94(6):2265-74. PMID:7989582 doi:http://dx.doi.org/10.1172/JCI117589
- ↑ Emmerich J, Chadeuf G, Alhenc-Gelas M, Gouault-Heilman M, Toulon P, Fiessinger JN, Aiach M. Molecular basis of antithrombin type I deficiency: the first large in-frame deletion and two novel mutations in exon 6. Thromb Haemost. 1994 Oct;72(4):534-9. PMID:7878627
- ↑ Okajima K, Abe H, Wagatsuma M, Okabe H, Takatsuki K. Antithrombin III Kumamoto II; a single mutation at Arg393-His increased the affinity of antithrombin III for heparin. Am J Hematol. 1995 Jan;48(1):12-8. PMID:7832187
- ↑ Ozawa T, Takikawa Y, Niiya K, Fujiwara T, Suzuki K, Sato S, Sakuragawa N. Antithrombin Morioka (Cys 95-Arg): a novel missense mutation causing type I antithrombin deficiency. Thromb Haemost. 1997 Feb;77(2):403. PMID:9157604
- ↑ Fitches AC, Appleby R, Lane DA, De Stefano V, Leone G, Olds RJ. Impaired cotranslational processing as a mechanism for type I antithrombin deficiency. Blood. 1998 Dec 15;92(12):4671-6. PMID:9845533
- ↑ Jochmans K, Lissens W, Seneca S, Capel P, Chatelain B, Meeus P, Osselaer JC, Peerlinck K, Seghers J, Slacmeulder M, Stibbe J, van de Loo J, Vermylen J, Liebaers I, De Waele M. The molecular basis of antithrombin deficiency in Belgian and Dutch families. Thromb Haemost. 1998 Sep;80(3):376-81. PMID:9759613
- ↑ Picard V, Bura A, Emmerich J, Alhenc-Gelas M, Biron C, Houbouyan-Reveillard LL, Molho P, Labatide-Alanore A, Sie P, Toulon P, Verdy E, Aiach M. Molecular bases of antithrombin deficiency in French families: identification of seven novel mutations in the antithrombin gene. Br J Haematol. 2000 Sep;110(3):731-4. PMID:10997988
- ↑ Niiya K, Kiguchi T, Dansako H, Fujimura K, Fujimoto T, Iijima K, Tanimoto M, Harada M. Two novel gene mutations in type I antithrombin deficiency. Int J Hematol. 2001 Dec;74(4):469-72. PMID:11794707
- ↑ Baud O, Picard V, Durand P, Duchemin J, Proulle V, Alhenc-Gelas M, Devictor D, Dreyfus M. Intracerebral hemorrhage associated with a novel antithrombin gene mutation in a neonate. J Pediatr. 2001 Nov;139(5):741-3. PMID:11713457 doi:10.1067/mpd.2001.118191
- ↑ Mushunje A, Zhou A, Huntington JA, Conard J, Carrell RW. Antithrombin 'DREUX' (Lys 114Glu): a variant with complete loss of heparin affinity. Thromb Haemost. 2002 Sep;88(3):436-43. PMID:12353073 doi:10.1267/THRO88030436
- ↑ Picard V, Dautzenberg MD, Villoutreix BO, Orliaguet G, Alhenc-Gelas M, Aiach M. Antithrombin Phe229Leu: a new homozygous variant leading to spontaneous antithrombin polymerization in vivo associated with severe childhood thrombosis. Blood. 2003 Aug 1;102(3):919-25. Epub 2003 Feb 20. PMID:12595305 doi:10.1182/blood-2002-11-3391
- ↑ Nagaizumi K, Inaba H, Amano K, Suzuki M, Arai M, Fukutake K. Five novel and four recurrent point mutations in the antithrombin gene causing venous thrombosis. Int J Hematol. 2003 Jul;78(1):79-83. PMID:12894857
- ↑ David D, Ribeiro S, Ferrao L, Gago T, Crespo F. Molecular basis of inherited antithrombin deficiency in Portuguese families: identification of genetic alterations and screening for additional thrombotic risk factors. Am J Hematol. 2004 Jun;76(2):163-71. PMID:15164384 doi:10.1002/ajh.20067
- ↑ Kuhli C, Jochmans K, Scharrer I, Luchtenberg M, Hattenbach LO. Retinal vein occlusion associated with antithrombin deficiency secondary to a novel G9840C missense mutation. Arch Ophthalmol. 2006 Aug;124(8):1165-9. PMID:16908819 doi:10.1001/archopht.124.8.1165
- ↑ Szabo R, Netzel-Arnett S, Hobson JP, Antalis TM, Bugge TH. Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity. Biochem J. 2005 Aug 15;390(Pt 1):231-42. PMID:15853774 doi:BJ20050299
- ↑ Johnson DJ, Langdown J, Huntington JA. Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):645-50. Epub 2009 Dec 22. PMID:20080729
|