3bod
From Proteopedia
Structure of mouse beta-neurexin 1
Structural highlights
Function[NRX1A_MOUSE] Cell surface protein involved in cell-cell-interactions, exocytosis of secretory granules and regulation of signal transmission. Function is isoform-specific. Alpha-type isoforms have a long N-terminus with six laminin G-like domains and play an important role in synaptic signal transmission. Alpha-type isoforms play a role in the regulation of calcium channel activity and Ca(2+)-triggered neurotransmitter release at synapses and at neuromuscular junctions. They play an important role in Ca(2+)-triggered exocytosis of secretory granules in pituitary gland. They may effect their functions at synapses and in endocrine cells via their interactions with proteins from the exocytotic machinery. Likewise, alpha-type isoforms play a role in regulating the activity of postsynaptic NMDA receptors, a subtype of glutamate-gated ion channels. Both alpha-type and beta-type isoforms may play a role in the formation or maintenance of synaptic junctions via their interactions (via the extracellular domains) with neuroligin family members, CBLN1 or CBLN2. In vitro, triggers the de novo formation of presynaptic structures. May be involved in specification of excitatory synapses. Alpha-type isoforms were first identified as receptors for alpha-latrotoxin from spider venom.[1] [2] [3] [4] [5] [6] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPresynaptic neurexins (NRXs) bind to postsynaptic neuroligins (NLs) to form Ca(2+)-dependent complexes that bridge neural synapses. beta-NRXs bind NLs through their LNS domains, which contain a single site of alternative splicing (splice site 4) giving rise to two isoforms: +4 and Delta. We present crystal structures of the Delta isoforms of the LNS domains from beta-NRX1 and beta-NRX2, crystallized in the presence of Ca(2+) ions. The Ca(2+)-binding site is disordered in the beta-NRX2 structure, but the 1.7 A beta-NRX1 structure reveals a single Ca(2+) ion, approximately 12 A from the splice insertion site, with one coordinating ligand donated by a glutamic acid from an adjacent beta-NRX1 molecule. NMR studies of beta-NRX1+4 show that the insertion sequence is unstructured, and remains at least partially disordered in complex with NL. These results raise the possibility that beta-NRX insertion sequence 4 may function in roles independent of neuroligin binding. Crystal structures of beta-neurexin 1 and beta-neurexin 2 ectodomains and dynamics of splice insertion sequence 4.,Koehnke J, Jin X, Trbovic N, Katsamba PS, Brasch J, Ahlsen G, Scheiffele P, Honig B, Palmer AG 3rd, Shapiro L Structure. 2008 Mar;16(3):410-21. PMID:18334216[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|