3fgh
From Proteopedia
Human mitochondrial transcription factor A box B
Structural highlights
Function[TFAM_HUMAN] Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation. Required for accurate and efficient promoter recognition by the mitochondrial RNA polymerase. Promotes transcription initiation from the HSP1 and the light strand promoter by binding immediately upstream of transcriptional start sites. Is able to unwind DNA. Bends the mitochondrial light strand promoter DNA into a U-turn shape via its HMG boxes. Required for maintenance of normal levels of mitochondrial DNA. May play a role in organizing and compacting mitochondrial DNA.[1] [2] [3] [4] [5] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe mitochondrial transcription factor A (mtTFA) is central to assembly and initiation of the mitochondrial transcription complex. Human mtTFA (h-mtTFA) is a dual high mobility group box (HMGB) protein that binds site-specifically to the mitochondrial genome and demarcates the promoters for recruitment of h-mtTFB1, h-mtTFB2 and the mitochondrial RNA polymerase. The stoichiometry of h-mtTFA was found to be a monomer in the absence of DNA, whereas it formed a dimer in the complex with the light strand promoter (LSP) DNA. Each of the HMG boxes and the C-terminal tail were evaluated for their ability to bind to the LSP DNA. Removal of the C-terminal tail only slightly decreased nonsequence specific DNA binding, and box A, but not box B, was capable of binding to the LSP DNA. The X-ray crystal structure of h-mtTFA box B, at 1.35 A resolution, revealed the features of a noncanonical HMG box. Interactions of box B with other regions of h-mtTFA were observed. Together, these results provide an explanation for the unusual DNA-binding properties of box B and suggest possible roles for this domain in transcription complex assembly. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A.,Gangelhoff TA, Mungalachetty PS, Nix JC, Churchill ME Nucleic Acids Res. 2009 Jun;37(10):3153-64. Epub 2009 Mar 20. PMID:19304746[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|