One-carbon metabolism
From Proteopedia
One-carbon metabolism refers to biochemical pathways that transfer a single carbon. Typically, these reactions are catalyzed by enzymes using cofactors or prosthetic groups such as S-adenosyl methionine, tetrahydrofolate, cobalamin or biotin, many of which are vitamin-derived[1]. The transfered carbon may have various oxidation states and end up as different functional groups such as methyl, methenyl, formyl, or carboxylate. One-carbon transfer reactions play a role in amino acid and nucleid acid biosynthesis, in epigenetics and cellular redox status [2].
This article is a work in process during the Spring 2022 semester.
References
- ↑ Li K, Wahlqvist ML, Li D. Nutrition, One-Carbon Metabolism and Neural Tube Defects: A Review. Nutrients. 2016 Nov 23;8(11). pii: nu8110741. doi: 10.3390/nu8110741. PMID:27886045 doi:http://dx.doi.org/10.3390/nu8110741
- ↑ Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017 Jan 10;25(1):27-42. doi: 10.1016/j.cmet.2016.08.009. Epub 2016, Sep 15. PMID:27641100 doi:http://dx.doi.org/10.1016/j.cmet.2016.08.009