3o95
From Proteopedia
Crystal Structure of Human DPP4 Bound to TAK-100
Structural highlights
Function[DPP4_HUMAN] Cell surface glycoprotein receptor involved in the costimulatory signal essential for T-cell receptor (TCR)-mediated T-cell activation. Acts as a positive regulator of T-cell coactivation, by binding at least ADA, CAV1, IGF2R, and PTPRC. Its binding to CAV1 and CARD11 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner. Its interaction with ADA also regulates lymphocyte-epithelial cell adhesion. In association with FAP is involved in the pericellular proteolysis of the extracellular matrix (ECM), the migration and invasion of endothelial cells into the ECM. May be involved in the promotion of lymphatic endothelial cells adhesion, migration and tube formation. When overexpressed, enhanced cell proliferation, a process inhibited by GPC3. Acts also as a serine exopeptidase with a dipeptidyl peptidase activity that regulates various physiological processes by cleaving peptides in the circulation, including many chemokines, mitogenic growth factors, neuropeptides and peptide hormones. Removes N-terminal dipeptides sequentially from polypeptides having unsubstituted N-termini provided that the penultimate residue is proline.[1] [2] [3] [4] [5] [6] [7] [8] [9] Publication Abstract from PubMedInhibition of dipeptidyl peptidase IV (DPP-4) is an exciting new approach for the treatment of diabetes. To date there has been no DPP-4 chemotype possessing a carboxy group that has progressed into clinical trials. Originating from the discovery of the structurally novel quinoline derivative 1, we designed novel pyridine derivatives containing a carboxy group. In our design, the carboxy group interacted with the targeted amino acid residues around the catalytic region and thereby increased the inhibitory activity. After further optimization, we identified a hydrate of [5-(aminomethyl)-6-(2,2-dimethylpropyl)-2-ethyl-4-(4-methylphenyl)pyridin- 3-yl]acetic acid (30c) as a potent and selective DPP-4 inhibitor. The desired interactions with the critical active-site residues, such as a salt-bridge interaction with Arg125, were confirmed by X-ray cocrystal structure analysis. In addition, compound 30c showed a desired preclinical safety profile, and it was encoded as TAK-100. Discovery of a 3-Pyridylacetic Acid Derivative (TAK-100) as a Potent, Selective and Orally Active Dipeptidyl Peptidase IV (DPP-4) Inhibitor.,Miyamoto Y, Banno Y, Yamashita T, Fujimoto T, Oi S, Moritoh Y, Asakawa T, Kataoka O, Yashiro H, Takeuchi K, Suzuki N, Ikedo K, Kosaka T, Tsubotani S, Tani A, Sasaki M, Funami M, Amano M, Yamamoto Y, Aertgeerts K, Yano J, Maezaki H J Med Chem. 2011 Jan 10. PMID:21218817[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Dipeptidyl-peptidase IV | Human | Large Structures | Aertgeerts, K | Yano, J K | Aminopeptidase | Cell membrane | Glycoprotein | Hydrolase | Membrane | Protease | Protease and 8-bladed beta-propeller domain | Secreted | Serine protease | Signal-anchor | Signaling protein | Signaling protein-inhibitor complex | Transmembrane