Sandbox Reserved 1737

From Proteopedia

Revision as of 14:45, 4 November 2022 by Bryan White (Talk | contribs)
Jump to: navigation, search
This Sandbox is Reserved from August 30, 2022 through May 31, 2023 for use in the course Biochemistry I taught by Kimberly Lane at the Radford University, Radford, VA, USA. This reservation includes Sandbox Reserved 1730 through Sandbox Reserved 1749.
To get started:
  • Click the edit this page tab at the top. Click on Show preview and then Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Contents

Structure

Insert caption here

Drag the structure with the mouse to rotate

Primary Structure: ~461 amino acids

Secondary Structure: 12 alpha helicies, 12 beta strands

Tertiary Structure: N-Terminal Regulatory Domain, C-Terminal Catalytic Domain

Quaternary Structure: Forms a homodimer

Function

Hexokinase serves to initiate the first step of glycolysis. Hexokinase reacts with glucose and ATP to produce glucose-6-phosphate, it does this by taking glucose into it's active site. Once in the active site, the carbon-6 hydroxyl group on hexokinase performs a nucleophilic attack on the terminal phosphate group of ATP, creating the glucose-6-phosphate, and ADP products.

Disease

Relevance

Structural highlights

The two domains of hexokinase are connected by a single alpha-helix. This creates a cleft region which acts as the active site for the enzyme.


References

1. D. J. Roberts, S. Miyamoto. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291497/ (Accessed 10/21/2022).

2. Anne M. Mulichuk, John E. Wilson, Kaillathe Padmanabhan, Michael Garavito. The structure of mammalian hexokinase-1. https://www.nature.com/articles/nsb0798_555. (Accessed 10/21/2022).

3. Valerie P. Tan, Shigeki Miyamoto. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. https://pubmed.ncbi.nlm.nih.gov/26075878/. (Accessed 10/21/2022).

4. M. Magnani, M. Bianchi, A. Casabianca, V. Stocchi, A. Daniele, F. Altruda, M. Ferrone, L. Silengo. A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates. https://pubmed.ncbi.nlm.nih.gov/1637300/. (Accessed 10/21/2022).

5. A. E. Aleshin, C. Zeng, G. P. Bourenkov, H. D. Bartunik, H. J. Fromm, R. B. Honzatko. The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. https://pubmed.ncbi.nlm.nih.gov/9493266/. (Accessed 10/21/2022).

6. Richard Southworth, Katherine A. B. Davey, Alice Warley, Pamela B. Garlick. A reevaluation of the roles of hexokinase I and II in the heart. https://journals.physiology.org/doi/full/10.1152/ajpheart.00664.2006. (Accessed 10/21/2022)

7. Èric Claeyssen, Jean Rivoal. Isozymes of plant hexokinase: Occurrence, properties and functions. https://www.sciencedirect.com/science/article/abs/pii/S0031942206007606. (Accessed 10/21/2022)

8. McKusick V. HEMOLYTIC ANEMIA, NONSPHEROCYTIC, DUE TO HEXOKINASE DEFICENCY. (accessed 2022-11-01 from OMIM: Online Mendelian Inheritance of Man).


Personal tools