Structural highlights
Function
B2CL1_HUMAN Potent inhibitor of cell death. Inhibits activation of caspases (By similarity). Appears to regulate cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. Also acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis.[1] [2] Isoform Bcl-X(S) promotes apoptosis.[3] [4]
Publication Abstract from PubMed
The development of constrained peptides represents an emerging strategy to generate peptide based probes and hits for drug-discovery that address challenging protein-protein interactions (PPIs). In this manuscript we report on the use of a novel alpha-alkenylglycine derived amino acid to synthesise hydrocarbon constrained BH3-family sequences (BIM and BID). Our biophysical and structural analyses illustrate that whilst the introduction of the constraint increases the population of the bioactive alpha-helical conformation of the peptide in solution, it does not enhance the inhibitory potency against pro-apoptotic Bcl-xL and Mcl-1 PPIs. SPR analyses indicate binding occurs via an induced fit mechanism whilst X-ray analyses illustrate none of the key interactions between the helix and protein are disturbed. The behaviour derives from enthalpy-entropy compensation which may be considered in terms of the ground state energies of the unbound constrained and unconstrained peptides; this has implications for the design of preorganised peptides to target protein-protein interactions.
Hydrocarbon constrained peptides - understanding preorganisation and binding affinity.,Miles JA, Yeo DJ, Rowell P, Rodriguez-Marin S, Pask CM, Warriner SL, Edwards TA, Wilson AJ Chem Sci. 2016 Jun 1;7(6):3694-3702. doi: 10.1039/c5sc04048e. Epub 2016 Feb 29. PMID:28970875[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010 Feb;30(3):640-56. doi: 10.1128/MCB.00882-09. Epub 2009 Nov, 16. PMID:19917720 doi:10.1128/MCB.00882-09
- ↑ Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011 Dec;23(12):2030-8. doi: 10.1016/j.cellsig.2011.07.017. Epub, 2011 Aug 5. PMID:21840391 doi:10.1016/j.cellsig.2011.07.017
- ↑ Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol. 2010 Feb;30(3):640-56. doi: 10.1128/MCB.00882-09. Epub 2009 Nov, 16. PMID:19917720 doi:10.1128/MCB.00882-09
- ↑ Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011 Dec;23(12):2030-8. doi: 10.1016/j.cellsig.2011.07.017. Epub, 2011 Aug 5. PMID:21840391 doi:10.1016/j.cellsig.2011.07.017
- ↑ Miles JA, Yeo DJ, Rowell P, Rodriguez-Marin S, Pask CM, Warriner SL, Edwards TA, Wilson AJ. Hydrocarbon constrained peptides - understanding preorganisation and binding affinity. Chem Sci. 2016 Jun 1;7(6):3694-3702. doi: 10.1039/c5sc04048e. Epub 2016 Feb 29. PMID:28970875 doi:http://dx.doi.org/10.1039/c5sc04048e