7yj2
From Proteopedia
Cryo-EM structure of SPT-ORMDL3 (ORMDL3-N13A) complex
Structural highlights
DiseaseSPTC2_HUMAN Hereditary sensory and autonomic neuropathy type 1. The disease is caused by variants affecting the gene represented in this entry. SPTLC2 disease mutations cause a shift in the substrate specificity of SPT resulting in the alternative use of L-alanine and L-glycine over its canonical substrate L-serine. This leads to the production of 1-deoxysphingolipids that cannot be correctly metabolized (PubMed:23658386).[1] [2] FunctionSPTC2_HUMAN Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate. Plays an important role in de novo sphyngolipid biosynthesis which is crucial for adipogenesis (By similarity).[UniProtKB:P97363][3] [4] [5] Publication Abstract from PubMedThe ORM/ORMDL family proteins function as regulatory subunits of the serine palmitoyltransferase (SPT) complex, which is the initiating and rate-limiting enzyme in sphingolipid biosynthesis. This complex is tightly regulated by cellular sphingolipid levels, but the sphingolipid sensing mechanism is unknown. Here we show that purified human SPT-ORMDL complexes are inhibited by the central sphingolipid metabolite ceramide. We have solved the cryo-EM structure of the SPT-ORMDL3 complex in a ceramide-bound state. Structure-guided mutational analyses reveal the essential function of this ceramide binding site for the suppression of SPT activity. Structural studies indicate that ceramide can induce and lock the N-terminus of ORMDL3 into an inhibitory conformation. Furthermore, we demonstrate that childhood amyotrophic lateral sclerosis (ALS) variants in the SPTLC1 subunit cause impaired ceramide sensing in the SPT-ORMDL3 mutants. Our work elucidates the molecular basis of ceramide sensing by the SPT-ORMDL complex for establishing sphingolipid homeostasis and indicates an important role of impaired ceramide sensing in disease development. Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis.,Xie T, Liu P, Wu X, Dong F, Zhang Z, Yue J, Mahawar U, Farooq F, Vohra H, Fang Q, Liu W, Wattenberg BW, Gong X Nat Commun. 2023 Jun 13;14(1):3475. doi: 10.1038/s41467-023-39274-y. PMID:37308477[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Homo sapiens | Large Structures | Gong X | Liu P | Xie T