5iku
From Proteopedia
Crystal structure of the Hathewaya histolytica ColG tandem collagen-binding domain s3as3b in the presence of calcium at 1.9 Angstrom resolution
Structural highlights
FunctionCOLG_HATHI Clostridial collagenases are among the most efficient degraders of eukaryotic collagen known; saprophytes use collagen as a carbon source while pathogens additionally digest collagen to aid in host colonization. Has both tripeptidylcarboxypeptidase on Gly-X-Y and endopeptidase activities; the endopeptidase cuts within the triple helix region of collagen while tripeptidylcarboxypeptidase successively digests the exposed ends, thus clostridial collagenases can digest large sections of collagen (PubMed:3002446). Active on soluble type I collagen, insoluble collagen, azocoll, soluble PZ-peptide (all collagenase substrates) and gelatin (PubMed:9922257). The full-length protein has collagenase activity, while the in vivo derived C-terminally truncated shorter versions only act on gelatin (PubMed:9922257). In vitro digestion of soluble calf skin collagen fibrils requires both ColG and ColH; ColG forms missing the second collagen-binding domain are also synergistic with ColH, although their overall efficiency is decreased (PubMed:18374061, PubMed:22099748). The activator domain (residues 119-388) and catalytic subdomain (389-670) open and close around substrate using a Gly-rich hinge (387-397), allowing digestion when the protein is closed (PubMed:21947205, PubMed:23703618). Binding of collagen requires Ca(2+) and is inhibited by EGTA; the collagen-binding domain (CBD, S3a plus S3b) specifically recognizes the triple-helical conformation made by 3 collagen protein chains in the triple-helical region (PubMed:11121400). Isolated CBD (S3a plus S3b) binds collagen fibrils and sheets of many tissues (PubMed:11913772).[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Publication Abstract from PubMedTo penetrate host tissues, histotoxic clostridia secrete virulence factors including enzymes to hydrolyze extracellular matrix. Clostridium histolyticum, recently renamed as Hathewaya histolytica, produces two classes of collagenase (ColG and ColH). The high-speed AFM study showed that ColG collagenase moves unidirectionally to plane collagen fibril and rebundles fibril when stalled . The structural explanation of the roles for the tandem collagen-binding segment (CBDs) is illuminated by its calcium-bound crystal structure at 1.9 A resolution (Rwork = 15.0%; Rfree = 19.6%). Activation may involve calcium-dependent domain rearrangement supported by both small-angle X-ray scattering and size exclusion chromatography. At pCa >/= 5 (pCa = -log[Ca(2+) ]), the tandem CBD adopts an extended conformation that may facilitate secretion from the bacterium. At pCa </= 4, the compact structure seen in the crystal structure is adopted. This arrangement positions the two binding surfaces ~ 55 A apart, and possibly ushers ColG along tropocollagen molecules that allow for unidirectional movement. A sequential binding mode where tighter binding CBD2 binds first could aid in processivity as well. Switch from processive collagenolysis to fibril rearrangement could be concentration dependent. Collagen fibril formation is retarded at 1 : 1 molar ratio of tandem CBD to collagen. Tandem CBD may help isolate a tropocollagen molecule from a fibril at this ratio. At 0.1 : 1 to 0.5 : 1 molar ratios fibril self-assembly was accelerated. Gain of function as a result of gene duplication of CBD for the M9B enzymes is speculated. The binding and activation modes described here will aid in drug delivery design. ACCESSION CODES: The full atomic coordinates of the tandem CBD and its corresponding structure factor amplitudes have been deposited in the Protein Data Bank (PDB accession code 5IKU). Small-angle X-ray scattering data and corresponding ab initio models have been submitted to the Small Angle Scattering Biological Data Bank (SASBDB). Accession codes CL2, collagenase module 2, CN2, CP2 are assigned to envelopes for tandem CBD at -log[Ca(2+) ] (pCa) 3, 4, 5, and 6, respectively. Accession code DC64 was assigned to the complex of polycystic kidney disease-CBD1-CBD2 with mini-collagen. Ca(2+) -induced orientation of tandem collagen binding domains from clostridial collagenase ColG permits two opposing functions of collagen fibril formation and retardation.,Caviness P, Bauer R, Tanaka K, Janowska K, Roeser JR, Harter D, Sanders J, Ruth C, Matsushita O, Sakon J FEBS J. 2018 Sep;285(17):3254-3269. doi: 10.1111/febs.14611. Epub 2018 Aug 20. PMID:30035850[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|