| Structural highlights
8bxl is a 6 chain structure with sequence from Penicillium expansum. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 2.4Å |
Ligands: | , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
PATE_PENEN Patulin synthase; part of the gene cluster that mediates the biosynthesis of patulin, an acetate-derived tetraketide mycotoxin produced by several fungal species that shows antimicrobial properties against several bacteria (PubMed:30100914, PubMed:25625822, PubMed:30680886). PatE catalyzes the last step of the pathway which is the conversion of E-ascladiol to patulin (PubMed:30680886). The pathway begins with the synthesis of 6-methylsalicylic acid by the polyketide synthase (PKS) patK via condensation of acetate and malonate units. The 6-methylsalicylic acid decarboxylase patG then catalyzes the decarboxylation of 6-methylsalicylic acid to yield m-cresol (also known as 3-methylphenol). These first reactions occur in the cytosol. The intermediate m-cresol is then transported into the endoplasmic reticulum where the cytochrome P450 monooxygenase patH converts it to m-hydroxybenzyl alcohol, which is further converted to gentisyl alcohol by the cytochrome P450 monooxygenase patI. The oxidoreductases patJ and patO further convert gentisyl alcohol to isoepoxydon in the vacuole. PatN catalyzes then the transformation of isoepoxydon into phyllostine. The cluster protein patF is responsible for the conversion from phyllostine to neopatulin whereas the alcohol dehydrogenase patD converts neopatulin to E-ascladiol. The steps between isoepoxydon and E-ascladiol occur in the cytosol, and E-ascladiol is probably secreted to the extracellular space by one of the cluster-specific transporters patC or patM. Finally, the secreted patulin synthase patE catalyzes the conversion of E-ascladiol to patulin (PubMed:30680886) (Probable).[1] [2] [3] [4]
References
- ↑ Li B, Zong Y, Du Z, Chen Y, Zhang Z, Qin G, Zhao W, Tian S. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species. Mol Plant Microbe Interact. 2015 Jun;28(6):635-47. PMID:25625822 doi:10.1094/MPMI-12-14-0398-FI
- ↑ Kumar D, Tannous J, Sionov E, Keller N, Prusky D. Apple Intrinsic Factors Modulating the Global Regulator, LaeA, the Patulin Gene Cluster and Patulin Accumulation During Fruit Colonization by Penicillium expansum. Front Plant Sci. 2018 Jul 27;9:1094. PMID:30100914 doi:10.3389/fpls.2018.01094
- ↑ Li B, Chen Y, Zong Y, Shang Y, Zhang Z, Xu X, Wang X, Long M, Tian S. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum. Environ Microbiol. 2019 Mar;21(3):1124-1139. PMID:30680886 doi:10.1111/1462-2920.14542
- ↑ Li B, Chen Y, Zong Y, Shang Y, Zhang Z, Xu X, Wang X, Long M, Tian S. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum. Environ Microbiol. 2019 Mar;21(3):1124-1139. PMID:30680886 doi:10.1111/1462-2920.14542
|