Structural highlights
Function
HA11_MOUSE Involved in the presentation of foreign antigens to the immune system.
Publication Abstract from PubMed
Human cancers frequently display defects in Ag processing and presentation allowing for immune evasion, and they therefore constitute a significant challenge for T cell-based immunotherapy. We have previously demonstrated that the antigenicity of tumor-associated Ags can be significantly enhanced through unconventional residue modifications as a novel tool for MHC class I (MHC-I)-based immunotherapy approaches. We have also previously identified a novel category of cancer neo-epitopes, that is, T cell epitopes associated with impaired peptide processing (TEIPP), that are selectively presented by MHC-I on cells lacking the peptide transporter TAP. In this study, we demonstrate that substitution of the nonanchoring position 3 into a proline residue of the first identified TEIPP peptide, the murine Trh4, results in significantly enhanced recognition by antitumor CTLs toward the wild-type epitope. Although higher immunogenicity has in most cases been associated with increased MHC/peptide complex stability, our results demonstrate that the overall stability of H-2D(b) in complex with the highly immunogenic altered peptide ligand Trh4-p3P is significantly reduced compared with wild-type H-2D(b)/Trh4. Comparison of the crystal structures of the H-2D(b)/Trh4-p3P and H-2D(b)/Trh4 complexes revealed that the conformation of the nonconventional methionine anchor residue p5M is altered, deleting its capacity to form adequate sulfur-pi interactions with H-2D(b) residues, thus reducing the overall longevity of the complex. Collectively, our results indicate that vaccination with Thr4-p3P significantly enhances T cell recognition of targets presenting the wild-type TEIPP epitope and that higher immunogenicity is not necessarily directly related to MHC/peptide complex stability, opening for the possibility to design novel peptide vaccines with reduced MHC/peptide complex stability.
The Immunogenicity of a Proline-Substituted Altered Peptide Ligand toward the Cancer-Associated TEIPP Neoepitope Trh4 Is Unrelated to Complex Stability.,Hafstrand I, Doorduijn EM, Sun R, Talyzina A, Sluijter M, Pellegrino S, Sandalova T, Duru AD, van Hall T, Achour A J Immunol. 2018 Mar 5. pii: jimmunol.1700228. doi: 10.4049/jimmunol.1700228. PMID:29507106[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hafstrand I, Doorduijn EM, Sun R, Talyzina A, Sluijter M, Pellegrino S, Sandalova T, Duru AD, van Hall T, Achour A. The Immunogenicity of a Proline-Substituted Altered Peptide Ligand toward the Cancer-Associated TEIPP Neoepitope Trh4 Is Unrelated to Complex Stability. J Immunol. 2018 Mar 5. pii: jimmunol.1700228. doi: 10.4049/jimmunol.1700228. PMID:29507106 doi:http://dx.doi.org/10.4049/jimmunol.1700228