Structural highlights
Publication Abstract from PubMed
Protein arginine deiminases (PAD) 4 is an enzyme that catalyzes citrullination of protein and its role in autoimmune diseases has been established through clinical genetics and gene knock out studies in mice. Further, studies with PAD4 - deficient mice have shown that PAD4 deficiency does not lead to increased infection or immune suppression, which makes PAD4 an attractive therapeutic target for auto-immune and inflammatory diseases. PAD4 has critical enzymatic role of promoting chromatin decondensation and neutrophil extracellular traps (NETs) formation that is associated with a number of immune-mediated pathological conditions. Here, we present a non-covalent PAD4 inhibitor JBI-589 with high PAD4 isoform selectivity and delineated its binding mode at 2.88 A resolution by X-ray crystallography. We confirmed its effectiveness in inhibiting NET formation in vitro. Additionally, by using two mouse arthritis models for human rheumatoid arthritis (RA), the well-known disease associated with PAD4 clinically, we established its efficacy in vivo. These results suggest that JBI-589 would be beneficial for both PAD4 and NET-associated pathological conditions.
Alleviation of arthritis through prevention of neutrophil extracellular traps by an orally available inhibitor of protein arginine deiminase 4.,Gajendran C, Fukui S, Sadhu NM, Zainuddin M, Rajagopal S, Gosu R, Gutch S, Fukui S, Sheehy CE, Chu L, Vishwakarma S, Jeyaraj DA, Hallur G, Wagner DD, Sivanandhan D Sci Rep. 2023 Feb 23;13(1):3189. doi: 10.1038/s41598-023-30246-2. PMID:36823444[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Gajendran C, Fukui S, Sadhu NM, Zainuddin M, Rajagopal S, Gosu R, Gutch S, Fukui S, Sheehy CE, Chu L, Vishwakarma S, Jeyaraj DA, Hallur G, Wagner DD, Sivanandhan D. Alleviation of arthritis through prevention of neutrophil extracellular traps by an orally available inhibitor of protein arginine deiminase 4. Sci Rep. 2023 Feb 23;13(1):3189. PMID:36823444 doi:10.1038/s41598-023-30246-2