8g17

From Proteopedia

Revision as of 23:11, 27 December 2023 by OCA (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search

CryoEM structure of wild-type GAPDH

<StructureSection load='8g17' size='340' side='right'caption='8g17, resolution 1.98Å' scene=>

Structural highlights

8g17 is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 1.98Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

G3P_HUMAN Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.[1] [2] [3]

Publication Abstract from PubMed

CRISPR/Cas9-based genome engineering has revolutionized our ability to manipulate biological systems, particularly in higher organisms. Here, we designed a set of homology-directed repair donor templates that enable efficient tagging of endogenous proteins with affinity tags by transient transfection and selection of genome-edited cells in various human cell lines. Combined with technological advancements in single-particle cryogenic electron microscopy, this strategy allows efficient structural studies of endogenous proteins captured in their native cellular environment and during different cellular processes. We demonstrated this strategy by tagging six different human proteins in both HEK293T and Jurkat cells. Moreover, analysis of endogenous glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in HEK293T cells allowed us to follow its behavior spatially and temporally in response to prolonged oxidative stress, correlating the increased number of oxidation-induced inactive catalytic sites in GAPDH with its translocation from cytosol to nucleus.

Efficient tagging of endogenous proteins in human cell lines for structural studies by single-particle cryo-EM.,Choi W, Wu H, Yserentant K, Huang B, Cheng Y Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2302471120. doi: , 10.1073/pnas.2302471120. Epub 2023 Jul 24. PMID:37487103[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ercolani L, Florence B, Denaro M, Alexander M. Isolation and complete sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem. 1988 Oct 25;263(30):15335-41. PMID:3170585
  2. Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota /lambda and plays a role in microtubule dynamics in the early secretory pathway. J Biol Chem. 2002 Feb 1;277(5):3334-41. Epub 2001 Nov 27. PMID:11724794 doi:10.1074/jbc.M109744200
  3. Arif A, Chatterjee P, Moodt RA, Fox PL. Heterotrimeric GAIT complex drives transcript-selective translation inhibition in murine macrophages. Mol Cell Biol. 2012 Dec;32(24):5046-55. doi: 10.1128/MCB.01168-12. Epub 2012 Oct , 15. PMID:23071094 doi:10.1128/MCB.01168-12
  4. Choi W, Wu H, Yserentant K, Huang B, Cheng Y. Efficient tagging of endogenous proteins in human cell lines for structural studies by single-particle cryo-EM. Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2302471120. PMID:37487103 doi:10.1073/pnas.2302471120

Contents

</StructureSection>

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools