8u8s
From Proteopedia
Y229F/S292F Streptomyces coelicolor Laccase
Structural highlights
FunctionPublication Abstract from PubMedThe key to type 1 copper (T1Cu) function lies in the fine tuning of the CuII/I reduction potential (E degrees T1Cu) to match its redox partners, enabling efficient electron transfer in a wide range of biological systems. While the secondary coordination sphere (SCS) effects have been used to tune E degrees T1Cu in azurin over a wide range, these principles are yet to be generalized to other T1Cu-containing proteins to tune catalytic properties. To this end, we have examined the effects of Y229F, V290N and S292F mutations around the T1Cu of small laccase (SLAC) from Streptomyces coelicolor to match the E degrees T1Cu to high reduction potential fungal laccases. Using ultraviolet-visible absorption and electron paramagnetic resonance spectroscopies, together with X-ray crystallography and spectroelectrochemistry, we have probed the influence of SCS mutations on the T1Cu and corresponding E degrees T1Cu. While minimal and small increases are observed in Y229F and S292F-SLAC, the V290N mutant exhibits a major increase in E degrees T1Cu. Moreover, the influence of these mutations on E degrees T1Cu is additive, culminating in a triple mutant Y229F/V290N/S292F-SLAC with the highest E degrees T1Cu of 556 mV vs. SHE reported to date. Further activity assays indicate that all mutants retain oxygen reduction reaction activity, and display improved catalytic efficiencies (kcat/KM) relative to WT-SLAC. Increasing Reduction Potentials of Type 1 Copper Center and Catalytic Efficiency of Small Laccase from Streptomyces coelicolor through Secondary Coordination Sphere Mutations.,Wang JX, Vilbert AC, Cui C, Mirts EN, Williams LH, Kim W, Zhang YJ, Lu Y Angew Chem Int Ed Engl. 2023 Nov 5:e202314019. doi: 10.1002/anie.202314019. PMID:37926680[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|