Structural highlights
5a8k is a 6 chain structure with sequence from Methanothermobacter wolfeii. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
Method: | X-ray diffraction, Resolution 1.41Å |
Ligands: | , , , , , , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
H7CHY1_METWO
Publication Abstract from PubMed
All methanogenic and methanotrophic archaea known to date contain methyl-coenzyme M reductase (MCR) that catalyzes the reversible reduction of methyl-coenzyme M to methane. This enzyme contains the nickel porphinoid F430 as a prosthetic group and, highly conserved, a thioglycine and four methylated amino acid residues near the active site. We describe herein the presence of a novel post-translationally modified amino acid, didehydroaspartate, adjacent to the thioglycine as revealed by mass spectrometry and high-resolution X-ray crystallography. Upon chemical reduction, the didehydroaspartate residue was converted into aspartate. Didehydroaspartate was found in MCR I and II from Methanothermobacter marburgensis and in MCR of phylogenetically distantly related Methanosarcina barkeri but not in MCR I and II of Methanothermobacter wolfeii, which indicates that didehydroaspartate is dispensable but might have a role in fine-tuning the active site to increase the catalytic efficiency.
Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation.,Wagner T, Kahnt J, Ermler U, Shima S Angew Chem Int Ed Engl. 2016 Jul 28. doi: 10.1002/anie.201603882. PMID:27467699[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Wagner T, Kahnt J, Ermler U, Shima S. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation. Angew Chem Int Ed Engl. 2016 Jul 28. doi: 10.1002/anie.201603882. PMID:27467699 doi:http://dx.doi.org/10.1002/anie.201603882