6hoy
From Proteopedia
Human Sirt6 in complex with ADP-ribose and the inhibitor trichostatin A
Structural highlights
FunctionSIR6_HUMAN NAD-dependent protein deacetylase. Has deacetylase activity towards histone H3K9Ac and H3K56Ac. Modulates acetylation of histone H3 in telomeric chromatin during the S-phase of the cell cycle. Deacetylates histone H3K9Ac at NF-kappa-B target promoters and may down-regulate the expression of a subset of NF-kappa-B target genes. Acts as a corepressor of the transcription factor HIF1A to control the expression of multiple glycolytic genes to regulate glucose homeostasis. Required for genomic stability. Regulates the production of TNF protein. Has a role in the regulation of life span (By similarity). Deacetylation of nucleosomes interferes with RELA binding to target DNA. May be required for the association of WRN with telomeres during S-phase and for normal telomere maintenance. Required for genomic stability. Required for normal IGF1 serum levels and normal glucose homeostasis. Modulates cellular senescence and apoptosis. On DNA damage, promotes DNA end resection via deacetylation of RBBP8. Has very weak deacetylase activity and can bind NAD(+) in the absence of acetylated substrate.[1] [2] [3] [4] [5] Publication Abstract from PubMedProtein lysine deacylases comprise three zinc-dependent families and the NAD+-dependent Sirtuins Sirt1-7, which contribute to aging-related diseases. Few Sirt6-specific inhibitors are available. Trichostatin A, which belongs to the potent, zinc-chelating hydroxamate inhibitors of zinc-dependent deacylases, was recently found to potently and iso-form-specifically inhibit Sirt6. We solved a crystal structure of a Sirt6/ADP-ribose/trichostatin A complex, which reveals nicotinamide pocket and acyl channel as binding site and provides interaction details supporting the develop-ment of improved deacylase inhibitors. Structural basis of Sirtuin 6 inhibition by the hydroxamate trichostatin A - implications for protein deacylase drug development.,You W, Steegborn C J Med Chem. 2018 Nov 5. doi: 10.1021/acs.jmedchem.8b01455. PMID:30395713[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|