Structural highlights
6xta is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
| Method: | X-ray diffraction, Resolution 2.5Å |
| Ligands: | , , , , , |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
CHLE_HUMAN Defects in BCHE are the cause of butyrylcholinesterase deficiency (BChE deficiency) [MIM:177400. BChE deficiency is a metabolic disorder characterized by prolonged apnoea after the use of certain anesthetic drugs, including the muscle relaxants succinylcholine or mivacurium and other ester local anesthetics. The duration of the prolonged apnoea varies significantly depending on the extent of the enzyme deficiency. BChE deficiency is a multifactorial disorder. The hereditary condition is transmitted as an autosomal recessive trait.
Function
CHLE_HUMAN Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.[1] [2]
Publication Abstract from PubMed
A series of tryptophan-based selective nanomolar butyrylcholinesterase (BChE) inhibitors was designed and synthesized. Compounds were optimized in terms of potency, selectivity, and synthetic accessibility. The crystal structure of the inhibitor 18 in complex with BChE revealed the molecular basis for its low nanomolar inhibition (IC50 = 2.8 nM). The favourable in vitro results enabled a first-in-animal in vivo efficacy and safety trial, which demonstrated a positive impact on fear-motivated and spatial long-term memory retrieval without any concomitant adverse motor effects. Altogether, this research culminated in a handful of new lead compounds with promising potential for symptomatic treatment of patients with Alzheimer's disease.
Structure-activity relationship study of tryptophan-based butyrylcholinesterase inhibitors.,Meden A, Knez D, Malikowska-Racia N, Brazzolotto X, Nachon F, Svete J, Salat K, Groselj U, Gobec S Eur J Med Chem. 2020 Aug 22;208:112766. doi: 10.1016/j.ejmech.2020.112766. PMID:32919297[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Chilukuri N, Duysen EG, Parikh K, diTargiani R, Doctor BP, Lockridge O, Saxena A. Adenovirus-transduced human butyrylcholinesterase in mouse blood functions as a bioscavenger of chemical warfare nerve agents. Mol Pharmacol. 2009 Sep;76(3):612-7. doi: 10.1124/mol.109.055665. Epub 2009 Jun, 19. PMID:19542320 doi:10.1124/mol.109.055665
- ↑ Amitay M, Shurki A. The structure of G117H mutant of butyrylcholinesterase: nerve agents scavenger. Proteins. 2009 Nov 1;77(2):370-7. doi: 10.1002/prot.22442. PMID:19452557 doi:10.1002/prot.22442
- ↑ Meden A, Knez D, Malikowska-Racia N, Brazzolotto X, Nachon F, Svete J, Sałat K, Grošelj U, Gobec S. Structure-activity relationship study of tryptophan-based butyrylcholinesterase inhibitors. Eur J Med Chem. 2020 Dec 15;208:112766. PMID:32919297 doi:10.1016/j.ejmech.2020.112766