Structural highlights
6t9s is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
| Method: | X-ray diffraction, Resolution 2.7Å |
| Ligands: | , , , , |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
CHLE_HUMAN Defects in BCHE are the cause of butyrylcholinesterase deficiency (BChE deficiency) [MIM:177400. BChE deficiency is a metabolic disorder characterized by prolonged apnoea after the use of certain anesthetic drugs, including the muscle relaxants succinylcholine or mivacurium and other ester local anesthetics. The duration of the prolonged apnoea varies significantly depending on the extent of the enzyme deficiency. BChE deficiency is a multifactorial disorder. The hereditary condition is transmitted as an autosomal recessive trait.
Function
CHLE_HUMAN Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.[1] [2]
Publication Abstract from PubMed
The enantiomers of racemic 2-hydroxyimino-N-(azidophenylpropyl)acetamide-derived triple-binding oxime reactivators were separated, and tested for inhibition and reactivation of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibited with tabun (GA), cyclosarin (GF), sarin (GB), and VX. Both enzymes showed the greatest affinity toward the methylimidazole derivative (III) of 2-hydroxyimino-N-(azidophenylpropyl)acetamide (I). The crystal structure was determined for the complex of oxime III within human BChE, confirming that all three binding groups interacted with active site residues. In the case of BChE inhibited by GF, oximes I (kr = 207 M-1 min-1) and III (kr = 213 M-1 min-1) showed better reactivation efficiency than the reference oxime 2-PAM. Finally, the key mechanistic steps in the reactivation of GF-inhibited BChE with oxime III were modelled using the PM7R6 method, stressing the importance of proton transfer from Nepsilon of His438 to Ogamma of Ser203 for achieving successful reactivation.
Enantioseparation, in vitro testing, and structural characterization of triple-binding reactivators of organophosphate-inhibited cholinesterases.,Marakovic N, Knezevic A, Roncevic I, Brazzolotto X, Kovarik Z, Sinko G Biochem J. 2020 Jul 8. pii: 225725. doi: 10.1042/BCJ20200192. PMID:32639532[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Chilukuri N, Duysen EG, Parikh K, diTargiani R, Doctor BP, Lockridge O, Saxena A. Adenovirus-transduced human butyrylcholinesterase in mouse blood functions as a bioscavenger of chemical warfare nerve agents. Mol Pharmacol. 2009 Sep;76(3):612-7. doi: 10.1124/mol.109.055665. Epub 2009 Jun, 19. PMID:19542320 doi:10.1124/mol.109.055665
- ↑ Amitay M, Shurki A. The structure of G117H mutant of butyrylcholinesterase: nerve agents scavenger. Proteins. 2009 Nov 1;77(2):370-7. doi: 10.1002/prot.22442. PMID:19452557 doi:10.1002/prot.22442
- ↑ Marakovic N, Knezevic A, Roncevic I, Brazzolotto X, Kovarik Z, Sinko G. Enantioseparation, in vitro testing, and structural characterization of triple-binding reactivators of organophosphate-inhibited cholinesterases. Biochem J. 2020 Jul 8. pii: 225725. doi: 10.1042/BCJ20200192. PMID:32639532 doi:http://dx.doi.org/10.1042/BCJ20200192