1oxy
From Proteopedia
CRYSTALLOGRAPHIC ANALYSIS OF OXYGENATED AND DEOXYGENATED STATES OF ARTHROPOD HEMOCYANIN SHOWS UNUSUAL DIFFERENCES
Structural highlights
FunctionHCY2_LIMPO Hemocyanins are copper-containing oxygen carriers occurring freely dissolved in the hemolymph of many mollusks and arthropods. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe X-ray structure of an oxygenated hemocyanin molecule, subunit II of Limulus polyphemus hemocyanin, was determined at 2.4 A resolution and refined to a crystallographic R-factor of 17.1%. The 73-kDa subunit crystallizes with the symmetry of the space group R32 with one subunit per asymmetric unit forming hexamers with 32 point group symmetry. Molecular oxygen is bound to a dinuclear copper center in the protein's second domain, symmetrically between and equidistant from the two copper atoms. The copper-copper distance in oxygenated Limulus hemocyanin is 3.6 +/- 0.2 A, which is surprisingly 1 A less than that seen previously in deoxygenated Limulus polyphemus subunit II hemocyanin (Hazes et al., Protein Sci. 2:597, 1993). Away from the oxygen binding sites, the tertiary and quaternary structures of oxygenated and deoxygenated Limulus subunit II hemocyanins are quite similar. A major difference in tertiary structures is seen, however, when the Limulus structures are compared with deoxygenated Panulirus interruptus hemocyanin (Volbeda, A., Hol, W.G.J.J. Mol. Biol. 209:249, 1989) where the position of domain 1 is rotated by 8 degrees with respect to domains 2 and 3. We postulate this rotation plays an important role in cooperativity and regulation of oxygen affinity in all arthropod hemocyanins. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences.,Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WG Proteins. 1994 Aug;19(4):302-9. PMID:7984626[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|