| Structural highlights
Function
ACE2_HUMAN Carboxypeptidase which converts angiotensin I to angiotensin 1-9, a peptide of unknown function, and angiotensin II to angiotensin 1-7, a vasodilator. Also able to hydrolyze apelin-13 and dynorphin-13 with high efficiency. May be an important regulator of heart function. In case of human coronaviruses SARS and HCoV-NL63 infections, serve as functional receptor for the spike glycoprotein of both coronaviruses.[1] [2] [3]
Publication Abstract from PubMed
Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.
In vitro evolution predicts emerging SARS-CoV-2 mutations with high affinity for ACE2 and cross-species binding.,Bate N, Savva CG, Moody PCE, Brown EA, Evans SE, Ball JK, Schwabe JWR, Sale JE, Brindle NPJ PLoS Pathog. 2022 Jul 18;18(7):e1010733. doi: 10.1371/journal.ppat.1010733. , eCollection 2022 Jul. PMID:35849637[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000 Sep 1;87(5):E1-9. PMID:10969042
- ↑ Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000 Oct 27;275(43):33238-43. PMID:10924499 doi:http://dx.doi.org/10.1074/jbc.M002615200
- ↑ Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003 Nov 27;426(6965):450-4. PMID:14647384 doi:http://dx.doi.org/10.1038/nature02145
- ↑ Bate N, Savva CG, Moody PCE, Brown EA, Evans SE, Ball JK, Schwabe JWR, Sale JE, Brindle NPJ. In vitro evolution predicts emerging SARS-CoV-2 mutations with high affinity for ACE2 and cross-species binding. PLoS Pathog. 2022 Jul 18;18(7):e1010733. PMID:35849637 doi:10.1371/journal.ppat.1010733
|