| Structural highlights
Function
1433Z_HUMAN Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3zeta in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3zeta with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3zeta in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3zeta via its microtubule binding domain and variable central domain. Monomerization of 14-3-3zeta leads to the loss of affinity for the unphosphorylated residues. In neuroblastoma cell extract, MAP2c is heavily phosphorylated by PKA and the proline kinase ERK2. Although 14-3-3zeta dimer or monomer do not interact with the residues phosphorylated by ERK2, ERK2 phosphorylation of MAP2c in the C-terminal domain reduces the binding of MAP2c to both oligomeric variants of 14-3-3zeta.
Characterization of multiple binding sites on microtubule associated protein 2c recognized by dimeric and monomeric 14-3-3zeta.,Jansen S, Narasimhan S, Cabre Fernandez P, Ilkovicova L, Kozelekova A, Kralova K, Hritz J, Zidek L FEBS J. 2025 Jan 29. doi: 10.1111/febs.17405. PMID:39877981[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Dubois T, Rommel C, Howell S, Steinhussen U, Soneji Y, Morrice N, Moelling K, Aitken A. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J Biol Chem. 1997 Nov 14;272(46):28882-8. PMID:9360956
- ↑ Zheng W, Zhang Z, Ganguly S, Weller JL, Klein DC, Cole PA. Cellular stabilization of the melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation. Nat Struct Biol. 2003 Dec;10(12):1054-7. Epub 2003 Oct 26. PMID:14578935 doi:10.1038/nsb1005
- ↑ Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 2004 Apr 21;23(8):1889-99. Epub 2004 Apr 8. PMID:15071501 doi:10.1038/sj.emboj.7600194
- ↑ Ganguly S, Weller JL, Ho A, Chemineau P, Malpaux B, Klein DC. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1222-7. Epub 2005 Jan 11. PMID:15644438 doi:0406871102
- ↑ Gu YM, Jin YH, Choi JK, Baek KH, Yeo CY, Lee KY. Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon. FEBS Lett. 2006 Jan 9;580(1):305-10. Epub 2005 Dec 19. PMID:16376338 doi:S0014-5793(05)01485-7
- ↑ Jansen S, Narasimhan S, Cabre Fernandez P, Iľkovičová L, Kozeleková A, Králová K, Hritz J, Žídek L. Characterization of multiple binding sites on microtubule associated protein 2c recognized by dimeric and monomeric 14-3-3ζ. FEBS J. 2025 Jan 29. PMID:39877981 doi:10.1111/febs.17405
|