Journal:Acta Cryst F:S2053230X25006181
From Proteopedia

The structures of Listeria monocytogenes MenD in ThDP-bound and in-crystallo captured intermediate I-bound formsMichelle Bailey, Fiona M. Given, Ngoc Anh Thu Ho, F. Grant Pearce, Timothy M. Allison and Jodie M. Johnston [1] Molecular Tour Bacteria contain either one of two pathways to make menaquinone, the classical or futalosine pathways, and MenD catalyses the first irreversible step in the classical pathway. It takes two substrates, 2-oxoglutarate and isochorismate and converts them to SEPHCHC via a series of reactions involving covalent ThDP-bound intermediates. We have solved several structures of MenD from the listeria-causing pathogen Listeria monocytogenes. Analysis of the structures show a typical (PP, PYR, TH3 domain) fold similar to other MenD enzymes. Our first structure, captured in the has enabled us to visualise and understand how the co-factor binds. By comparing this structure to one without ThDP-bound (apo) in the protein databank we can see how the enzyme active site partially-closes around the co-factor. In our second structure we were able to capture reactivity within the crystal with an in-crystallo formed covalent ThDP-intermediate (Intermediate I) bound in the active site. Studying the shape and interactions of this intermediate helps us understand more about the chemistry of the enzyme. In additional studies we used our structural analysis combined with other methods (size-exclusion chromatography, mass photometry and small angle X-ray scattering analysis) to understand the oligomeric state of the enzyme. Showing that like other MenD’s, Listeria monocytogenes MenD has a homotetrameric quaternary structure. We also undertook enzyme kinetics to show the enzyme was active, and that there was weak inhibition of enzyme activity in the presence of 1,4- dihydroxy-2-naphthoic acid, a downstream metabolite in the menaquinone-biosynthesis pathway that has previously been shown to be a potent allosteric regulator of Mycobacterium tuberculosis MenD. References |