1vfw
From Proteopedia
|
Crystal Structure of the Kif1A Motor Domain Complexed With Mg-AMPPNP
Overview
The motor protein kinesin moves along microtubules, driven by adenosine, triphosphate (ATP) hydrolysis. However, it remains unclear how kinesin, converts the chemical energy into mechanical movement. We report crystal, structures of monomeric kinesin KIF1A with three transition-state analogs:, adenylyl imidodiphosphate (AMP-PNP), adenosine diphosphate (ADP)-vanadate, and ADP-AlFx (aluminofluoride complexes). These structures, together with, known structures of the ADP-bound state and the, adenylyl-(beta,gamma-methylene) diphosphate (AMP-PCP)-bound state, show, that kinesin uses two microtubule-binding loops in an alternating manner, to change its interaction with microtubules during the ATP hydrolysis, cycle; loop L11 is extended in the AMP-PNP structure, whereas loop L12 is, extended in the ADP structure. ADP-vanadate displays an intermediate, structure in which a conformational change in two switch regions causes, both loops to be raised from the microtubule, thus actively detaching, kinesin.
About this Structure
1VFW is a Single protein structure of sequence from Mus musculus with MG and ANP as ligands. Full crystallographic information is available from OCA.
Reference
KIF1A alternately uses two loops to bind microtubules., Nitta R, Kikkawa M, Okada Y, Hirokawa N, Science. 2004 Jul 30;305(5684):678-83. PMID:15286375
Page seeded by OCA on Wed Nov 21 04:48:38 2007
Categories: Mus musculus | Single protein | Hirokawa, N. | Kikkawa, M. | Nitta, R. | Okada, Y. | ANP | MG | Kinesin | Microtubule | Motor