6exp
From Proteopedia
Crystal structure of the SIRV3 AcrID1 (gp02) anti-CRISPR protein
Structural highlights
FunctionPublication Abstract from PubMedViruses employ a range of strategies to counteract the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas), including mutational escape and physical blocking of enzymatic function using anti-CRISPR proteins (Acrs). Acrs have been found in many bacteriophages but so far not in archaeal viruses, despite the near ubiquity of CRISPR-Cas systems in archaea. Here, we report the functional and structural characterization of two archaeal Acrs from the lytic rudiviruses, SIRV2 and SIRV3. We show that a 4 kb deletion in the SIRV2 genome dramatically reduces infectivity in Sulfolobus islandicus LAL14/1 that carries functional CRISPR-Cas subtypes I-A, I-D and III-B. Subsequent insertion of a single gene from SIRV3, gp02 (AcrID1), which is conserved in the deleted fragment, successfully restored infectivity. We demonstrate that AcrID1 protein inhibits the CRISPR-Cas subtype I-D system by interacting directly with Cas10d protein, which is required for the interference stage. Sequence and structural analysis of AcrID1 show that it belongs to a conserved family of compact, dimeric alphabeta-sandwich proteins characterized by extreme pH and temperature stability and a tendency to form protein fibres. We identify about 50 homologues of AcrID1 in four archaeal viral families demonstrating the broad distribution of this group of anti-CRISPR proteins. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity.,He F, Bhoobalan-Chitty Y, Van LB, Kjeldsen AL, Dedola M, Makarova KS, Koonin EV, Brodersen DE, Peng X Nat Microbiol. 2018 Apr;3(4):461-469. doi: 10.1038/s41564-018-0120-z. Epub 2018, Mar 5. PMID:29507349[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|