3i95

From Proteopedia

Jump to: navigation, search

Crystal structure of E76Q mutant PcyA-biliverdin complex

Structural highlights

3i95 is a 1 chain structure with sequence from Synechocystis sp. PCC 6803. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.4Å
Ligands:BLA
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PCYA_SYNY3 Catalyzes the four-electron reduction of biliverdin IX-alpha (2-electron reduction at both the A and D rings); the reaction proceeds via an isolatable 2-electron intermediate, 181,182-dihydrobiliverdin (By similarity).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Phycocyanobilin:ferredoxin oxidoreductase (PcyA) is the best characterized member of the ferredoxin-dependent bilin reductase family. Unlike other ferredoxin-dependent bilin reductases that catalyze a two-electron reduction, PcyA sequentially reduces D-ring (exo) and A-ring (endo) vinyl groups of biliverdin IXalpha (BV) to yield phycocyanobilin, a key pigment precursor of the light-harvesting antennae complexes of red algae, cyanobacteria, and cryptophytes. To address the structural basis for the reduction regiospecificity of PcyA, we report new high resolution crystal structures of bilin substrate complexes of PcyA from Synechocystis sp. PCC6803, all of which lack exo-vinyl reduction activity. These include the BV complex of the E76Q mutant as well as substrate-bound complexes of wild-type PcyA with the reaction intermediate 18(1),18(2)-dihydrobiliverdin IXalpha (18EtBV) and with biliverdin XIIIalpha (BV13), a synthetic substrate that lacks an exo-vinyl group. Although the overall folds and the binding sites of the U-shaped substrates of all three complexes were similar with wild-type PcyA-BV, the orientation of the Glu-76 side chain, which was in close contact with the exo-vinyl group in PcyA-BV, was rotated away from the bilin D-ring. The local structures around the A-rings in the three complexes, which all retain the ability to reduce the A-ring of their bound pigments, were nearly identical with that of wild-type PcyA-BV. Consistent with the proposed proton-donating role of the carboxylic acid side chain of Glu-76 for exo-vinyl reduction, these structures reveal new insight into the reduction regiospecificity of PcyA.

Structural insights into vinyl reduction regiospecificity of phycocyanobilin:ferredoxin oxidoreductase (PcyA).,Hagiwara Y, Sugishima M, Khawn H, Kinoshita H, Inomata K, Shang L, Lagarias JC, Takahashi Y, Fukuyama K J Biol Chem. 2010 Jan 8;285(2):1000-7. Epub 2009 Nov 2. PMID:19887371[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Hagiwara Y, Sugishima M, Khawn H, Kinoshita H, Inomata K, Shang L, Lagarias JC, Takahashi Y, Fukuyama K. Structural insights into vinyl reduction regiospecificity of phycocyanobilin:ferredoxin oxidoreductase (PcyA). J Biol Chem. 2010 Jan 8;285(2):1000-7. Epub 2009 Nov 2. PMID:19887371 doi:10.1074/jbc.M109.055632

Contents


PDB ID 3i95

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools