3lqq

From Proteopedia

Jump to: navigation, search

Structure of the CED-4 Apoptosome

Structural highlights

3lqq is a 2 chain structure with sequence from Caenorhabditis elegans. The September 2014 RCSB PDB Molecule of the Month feature on Apoptosomes by David Goodsell is 10.2210/rcsb_pdb/mom_2014_9. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.534Å
Ligands:ATP, MG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CED4_CAEEL Isoform a plays a major role in programmed cell death (PCD, apoptosis). Egl-1 binds to and directly inhibits the activity of ced-9, releasing the cell death activator ced-4 from a ced-9/ced-4 containing protein complex and allowing ced-4 to activate the cell-killing caspase ced-3. Isoform b prevents PCD.[1] [2] [3] [4] [5]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The CED-4 homo-oligomer or apoptosome is required for initiation of programmed cell death in Caenorhabditis elegans by facilitating autocatalytic activation of the CED-3 caspase zymogen. How the CED-4 apoptosome assembles and activates CED-3 remains enigmatic. Here we report the crystal structure of the complete CED-4 apoptosome and show that it consists of eight CED-4 molecules, organized as a tetramer of an asymmetric dimer via a previously unreported interface among AAA(+) ATPases. These eight CED-4 molecules form a funnel-shaped structure. The mature CED-3 protease is monomeric in solution and forms an active holoenzyme with the CED-4 apoptosome, within which the protease activity of CED-3 is markedly stimulated. Unexpectedly, the octameric CED-4 apoptosome appears to bind only two, not eight, molecules of mature CED-3. The structure of the CED-4 apoptosome reveals shared principles for the NB-ARC family of AAA(+) ATPases and suggests a mechanism for the activation of CED-3.

Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4.,Qi S, Pang Y, Hu Q, Liu Q, Li H, Zhou Y, He T, Liang Q, Liu Y, Yuan X, Luo G, Li H, Wang J, Yan N, Shi Y Cell. 2010 Apr 30;141(3):446-57. PMID:20434985[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Yuan J, Horvitz HR. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development. 1992 Oct;116(2):309-20. PMID:1286611
  2. Shaham S, Horvitz HR. An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell. 1996 Jul 26;86(2):201-8. PMID:8706125
  3. Wu D, Wallen HD, Nunez G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science. 1997 Feb 21;275(5303):1126-9. PMID:9027313
  4. Chen F, Hersh BM, Conradt B, Zhou Z, Riemer D, Gruenbaum Y, Horvitz HR. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science. 2000 Feb 25;287(5457):1485-9. PMID:10688797
  5. Yan N, Gu L, Kokel D, Chai J, Li W, Han A, Chen L, Xue D, Shi Y. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell. 2004 Sep 24;15(6):999-1006. PMID:15383288 doi:10.1016/j.molcel.2004.08.022
  6. Qi S, Pang Y, Hu Q, Liu Q, Li H, Zhou Y, He T, Liang Q, Liu Y, Yuan X, Luo G, Li H, Wang J, Yan N, Shi Y. Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Cell. 2010 Apr 30;141(3):446-57. PMID:20434985 doi:10.1016/j.cell.2010.03.017

Contents


PDB ID 3lqq

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools