5l53
From Proteopedia
Menthone neomenthol reductase from Mentha piperita in complex with NADP
Structural highlights
FunctionPublication Abstract from PubMedThree enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of alpha,beta-unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. Pinpointing a Mechanistic Switch Between Ketoreduction and "Ene" Reduction in Short-Chain Dehydrogenases/Reductases.,Lygidakis A, Karuppiah V, Hoeven R, Ni Cheallaigh A, Leys D, Gardiner JM, Toogood HS, Scrutton NS Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9596-600. doi: 10.1002/anie.201603785. , Epub 2016 Jul 13. PMID:27411040[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|