| Structural highlights
Function
4F2_HUMAN Required for the function of light chain amino-acid transporters. Involved in sodium-independent, high-affinity transport of large neutral amino acids such as phenylalanine, tyrosine, leucine, arginine and tryptophan. Involved in guiding and targeting of LAT1 and LAT2 to the plasma membrane. When associated with SLC7A6 or SLC7A7 acts as an arginine/glutamine exchanger, following an antiport mechanism for amino acid transport, influencing arginine release in exchange for extracellular amino acids. Plays a role in nitric oxide synthesis in human umbilical vein endothelial cells (HUVECs) via transport of L-arginine. Required for normal and neoplastic cell growth. When associated with SLC7A5/LAT1, is also involved in the transport of L-DOPA across the blood-brain barrier, and that of thyroid hormones triiodothyronine (T3) and thyroxine (T4) across the cell membrane in tissues such as placenta. Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity. When associated with SLC7A5 or SLC7A8, involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane. Together with ICAM1, regulates the transport activity LAT2 in polarized intestinal cells, by generating and delivering intracellular signals. When associated with SLC7A5, plays an important role in transporting L-leucine from the circulating blood to the retina across the inner blood-retinal barrier.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
Publication Abstract from PubMed
The L-type amino acid transporter 1 (LAT1; also known as SLC7A5) catalyses the cross-membrane flux of large neutral amino acids in a sodium- and pH-independent manner(1-3). LAT1, an antiporter of the amino acid-polyamine-organocation superfamily, also catalyses the permeation of thyroid hormones, pharmaceutical drugs, and hormone precursors such as L-3,4-dihydroxyphenylalanine across membranes(2-6). Overexpression of LAT1 has been observed in a wide range of tumour cells, and it is thus a potential target for anti-cancer drugs(7-11). LAT1 forms a heteromeric amino acid transporter complex with 4F2 cell-surface antigen heavy chain (4F2hc; also known as SLC3A2)-a type II membrane glycoprotein that is essential for the stability of LAT1 and for its localization to the plasma membrane(8,9). Despite extensive cell-based characterization of the LAT1-4F2hc complex and structural determination of its homologues in bacteria, the interactions between LAT1 and 4F2hc and the working mechanism of the complex remain largely unknown(12-19). Here we report the cryo-electron microscopy structures of human LAT1-4F2hc alone and in complex with the inhibitor 2-amino-2-norbornanecarboxylic acid at resolutions of 3.3 A and 3.5 A, respectively. LAT1 exhibits an inward open conformation. Besides a disulfide bond association, LAT1 also interacts extensively with 4F2hc on the extracellular side, within the membrane, and on the intracellular side. Biochemical analysis reveals that 4F2hc is essential for the transport activity of the complex. Together, our characterizations shed light on the architecture of the LAT1-4F2hc complex, and provide insights into its function and the mechanisms through which it might be associated with disease.
Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex.,Yan R, Zhao X, Lei J, Zhou Q Nature. 2019 Mar 13. pii: 10.1038/s41586-019-1011-z. doi:, 10.1038/s41586-019-1011-z. PMID:30867591[16]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001 Oct 1;1514(2):291-302. PMID:11557028
- ↑ Torrents D, Estevez R, Pineda M, Fernandez E, Lloberas J, Shi YB, Zorzano A, Palacin M. Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem. 1998 Dec 4;273(49):32437-45. PMID:9829974
- ↑ Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998 Sep 17;395(6699):288-91. PMID:9751058 doi:http://dx.doi.org/10.1038/26246
- ↑ Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F. Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J. 1999 Jan 4;18(1):49-57. PMID:9878049 doi:http://dx.doi.org/10.1093/emboj/18.1.49
- ↑ Broer A, Wagner CA, Lang F, Broer S. The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J. 2000 Aug 1;349 Pt 3:787-95. PMID:10903140
- ↑ Broer A, Friedrich B, Wagner CA, Fillon S, Ganapathy V, Lang F, Broer S. Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains. Biochem J. 2001 May 1;355(Pt 3):725-31. PMID:11311135
- ↑ Ritchie JW, Taylor PM. Role of the System L permease LAT1 in amino acid and iodothyronine transport in placenta. Biochem J. 2001 Jun 15;356(Pt 3):719-25. PMID:11389679
- ↑ Friesema EC, Docter R, Moerings EP, Verrey F, Krenning EP, Hennemann G, Visser TJ. Thyroid hormone transport by the heterodimeric human system L amino acid transporter. Endocrinology. 2001 Oct;142(10):4339-48. PMID:11564694
- ↑ Okamoto Y, Sakata M, Ogura K, Yamamoto T, Yamaguchi M, Tasaka K, Kurachi H, Tsurudome M, Murata Y. Expression and regulation of 4F2hc and hLAT1 in human trophoblasts. Am J Physiol Cell Physiol. 2002 Jan;282(1):C196-204. PMID:11742812
- ↑ Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N. Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J. 2002 Oct 1;367(Pt 1):239-46. PMID:12117417 doi:http://dx.doi.org/10.1042/BJ20020841
- ↑ Kim DK, Kanai Y, Choi HW, Tangtrongsup S, Chairoungdua A, Babu E, Tachampa K, Anzai N, Iribe Y, Endou H. Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells. Biochim Biophys Acta. 2002 Sep 20;1565(1):112-21. PMID:12225859
- ↑ Arancibia-Garavilla Y, Toledo F, Casanello P, Sobrevia L. Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium. Exp Physiol. 2003 Nov;88(6):699-710. PMID:14603368
- ↑ Liu X, Charrier L, Gewirtz A, Sitaraman S, Merlin D. CD98 and intracellular adhesion molecule I regulate the activity of amino acid transporter LAT-2 in polarized intestinal epithelia. J Biol Chem. 2003 Jun 27;278(26):23672-7. Epub 2003 Apr 25. PMID:12716892 doi:http://dx.doi.org/10.1074/jbc.M302777200
- ↑ Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K. L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005 Jul;46(7):2522-30. PMID:15980244 doi:http://dx.doi.org/10.1167/iovs.04-1175
- ↑ Li S, Whorton AR. Identification of stereoselective transporters for S-nitroso-L-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J Biol Chem. 2005 May 20;280(20):20102-10. Epub 2005 Mar 15. PMID:15769744 doi:http://dx.doi.org/10.1074/jbc.M413164200
- ↑ Yan R, Zhao X, Lei J, Zhou Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature. 2019 Mar 13. pii: 10.1038/s41586-019-1011-z. doi:, 10.1038/s41586-019-1011-z. PMID:30867591 doi:http://dx.doi.org/10.1038/s41586-019-1011-z
|