6r6t
From Proteopedia
Crystal structure of mouse cis-aconitate decarboxylase
Structural highlights
FunctionIRG1_MOUSE Cis-aconitate decarboxylase that catalyzes production of itaconate and is involved in the inhibition of the inflammatory response (PubMed:23609450, PubMed:23610393, PubMed:30635240, PubMed:31548418). Acts as a negative regulator of the Toll-like receptors (TLRs)-mediated inflammatory innate response by stimulating the tumor necrosis factor alpha-induced protein TNFAIP3 expression via reactive oxygen species (ROS) in LPS-tolerized macrophages (PubMed:23609450). Involved in antimicrobial response of innate immune cells; ACOD1-mediated itaconic acid production contributes to the antimicrobial activity of macrophages by generating itaconate, leading to alkylation of proteins, such as TFEB (PubMed:23610393, PubMed:35662396). Involved in antiviral response following infection by flavivirus in neurons: ACOD1-mediated itaconate production inhibits the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes (PubMed:30635240). Plays a role in the embryo implantation (PubMed:14500577).[1] [2] [3] [4] [5] [6] Publication Abstract from PubMedcis-Aconitate decarboxylase (CAD, also known as ACOD1 or Irg1) converts cis-aconitate to itaconate and plays central roles in linking innate immunity with metabolism and in the biotechnological production of itaconic acid by Aspergillus terreus We have elucidated the crystal structures of human and murine CADs and compared their enzymological properties to CAD from A. terreus Recombinant CAD is fully active in vitro without a cofactor. Murine CAD has the highest catalytic activity, whereas Aspergillus CAD is best adapted to a more acidic pH. CAD is not homologous to any known decarboxylase and appears to have evolved from prokaryotic enzymes that bind negatively charged substrates. CADs are homodimers, the active center is located in the interface between 2 distinct subdomains, and structural modeling revealed conservation in zebrafish and Aspergillus We identified 8 active-site residues critical for CAD function and rare naturally occurring human mutations in the active site that abolished CAD activity, as well as a variant (Asn152Ser) that increased CAD activity and is common (allele frequency 20%) in African ethnicity. These results open the way for 1) assessing the potential impact of human CAD variants on disease risk at the population level, 2) developing therapeutic interventions to modify CAD activity, and 3) improving CAD efficiency for biotechnological production of itaconic acid. Crystal structure of cis-aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis.,Chen F, Lukat P, Iqbal AA, Saile K, Kaever V, van den Heuvel J, Blankenfeldt W, Bussow K, Pessler F Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20644-20654. doi:, 10.1073/pnas.1908770116. Epub 2019 Sep 23. PMID:31548418[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Large Structures | Mus musculus | Blankenfeldt W | Buessow K | Chen F | Lukat P | Pessler F | Saile K