6wf2
From Proteopedia
Crystal structure of mouse SCD1 with a diiron center
Structural highlights
FunctionACOD1_MOUSE Terminal component of the liver microsomal stearyl-CoA desaturase system, that utilizes O(2) and electrons from reduced cytochrome b5 to catalyze the insertion of a double bond into a spectrum of fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA. Publication Abstract from PubMedStearoyl-CoA desaturase 1 (SCD1) is a membrane-embedded metalloenzyme that catalyzes the formation of a double bond on a saturated acyl-CoA. SCD1 has a diiron center and its proper function requires an electron transport chain composed of NADH (or NADPH), cytochrome b5 reductase (b5R), and cytochrome b5 (cyt b5). Since SCD1 is a key regulator in fat metabolism and is required for survival of cancer cells, there is intense interest in targeting SCD1 for various metabolic diseases and cancers. Crystal structures of human and mouse SCD1 were reported recently; however, both proteins have two zinc ions instead of two iron ions in the catalytic center, and as a result, the enzymes are inactive. Here we report a general approach for incorporating iron into heterologously expressed proteins in HEK293 cells. We produced mouse SCD1 that contains a diiron center and visualized its diiron center by solving its crystal structure to 3.5 A. We assembled the entire electron transport chain using the purified soluble domains of cyt b5 and b5R, and the purified mouse SCD1, and we showed that three proteins coordinate to produce proper products. These results established an in vitro system that allows precise perturbations of the electron transport chain for the understanding of the catalytic mechanism in SCD1. Structure and Mechanism of a Unique Diiron Center in Mammalian Stearoyl-CoA Desaturase.,Shen J, Wu G, Tsai AL, Zhou M J Mol Biol. 2020 May 27. pii: S0022-2836(20)30367-3. doi:, 10.1016/j.jmb.2020.05.017. PMID:32470559[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|