6xys

From Proteopedia

Jump to: navigation, search

Update of native acetylcholinesterase from Drosophila Melanogaster

Structural highlights

6xys is a 1 chain structure with sequence from Drosophila melanogaster. This structure supersedes the now removed PDB entry 1qo9. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.46Å
Ligands:ACT, BMA, CL, MAN, NAG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ACES_DROME Rapidly hydrolyzes choline released into the synapse. It can hydrolyze butyrylthiocholine.

Publication Abstract from PubMed

Over recent decades, crystallographic software for data processing and structure refinement has improved dramatically, resulting in more accurate and detailed crystal structures. It is, therefore, sometimes valuable to have a second look at "old" diffraction data, especially when earlier interpretation of the electron density maps was rather difficult. Here, we present updated crystal structures of Drosophila melanogaster acetylcholinesterase (DmAChE) originally published in [Harel et al., Prot Sci (2000) 9:1063-1072], which reveal features previously unnoticed. Thus, previously unmodeled density in the native active site can be interpreted as stable acetylation of the catalytic serine. Similarly, a strong density in the DmAChE/ZA complex originally attributed to a sulfate ion is better interpreted as a small molecule that is covalently bound. This small molecule can be modeled as either a propionate or a glycinate. The complex is reminiscent of the carboxylate butyrylcholinesterase complexes observed in crystal structures of human butyrylcholinesterases from various sources, and demonstrates the remarkable ability of cholinesterases to stabilize covalent complexes with carboxylates. A very strong peak of density (10 sigma) at covalent distance from the Cbeta of the catalytic serine is present in the DmAChE/ZAI complex. This can be undoubtedly attributed to an iodine atom, suggesting an unanticipated iodo/hydroxyl exchange between Ser238 and the inhibitor, possibly driven by the intense X-ray irradiation. Finally, the binding of tacrine-derived inhibitors, such as ZA (1DX4) or the iodinated analog, ZAI (1QON) results in the appearance of an open channel that connects the base of the active-site gorge to the solvent. This channel, which arises due to the absence of the conserved tyrosine present in vertebrate cholinesterases, could be exploited to design inhibitors specific to insect cholinesterases. The present study demonstrates that updated processing of older diffraction images, and the re-refinement of older diffraction data, can produce valuable information that could not be detected in the original analysis, and strongly supports the preservation of the diffraction images in public data banks.

A Second Look at the Crystal Structures of Drosophila melanogaster Acetylcholinesterase in Complex with Tacrine Derivatives Provides Insights Concerning Catalytic Intermediates and the Design of Specific Insecticides.,Nachon F, Rosenberry TL, Silman I, Sussman JL Molecules. 2020 Mar 6;25(5). pii: molecules25051198. doi:, 10.3390/molecules25051198. PMID:32155891[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Nachon F, Rosenberry TL, Silman I, Sussman JL. A Second Look at the Crystal Structures of Drosophila melanogaster Acetylcholinesterase in Complex with Tacrine Derivatives Provides Insights Concerning Catalytic Intermediates and the Design of Specific Insecticides. Molecules. 2020 Mar 6;25(5). pii: molecules25051198. doi:, 10.3390/molecules25051198. PMID:32155891 doi:http://dx.doi.org/10.3390/molecules25051198

Contents


PDB ID 6xys

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools