7doc
From Proteopedia
Crystal structure of Zika NS2B-NS3 protease with compound 5
Structural highlights
FunctionPOLG_ZIKV Protein C: Encapsulates the genomic RNA.[UniProtKB:P17763] prM: Acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is matured in the last step of virion assembly, presumably to avoid catastrophic activation of the viral fusion peptide induced by the acidic pH of the trans-Golgi network. After cleavage by host furin, the pr peptide is released in the extracellular medium and small envelope protein M and envelope protein E homodimers are dissociated.[UniProtKB:P17763] Envelope protein E: Binding to host cell surface receptor is followed by virus internalization through clathrin-mediated endocytosis. Envelope protein E is subsequently involved in membrane fusion between virion and host late endosomes. Synthesized as a homodimer with prM which acts as a chaperone for envelope protein E. After cleavage of prM, envelope protein E dissociate from small envelope protein M and homodimerizes.[UniProtKB:P17763] Non-structural protein 1: Involved in virus replication and regulation of the innate immune response.[UniProtKB:P17763] Non-structural protein 2A: May be involved viral RNA replication and capsid assembly.[UniProtKB:P09732] Non-structural protein 4A: Induces host endoplasmic reticulum membrane rearrangements leading to the formation of virus-induced membranous vesicles hosting the dsRNA and polymerase, functioning as a replication complex. NS4A might also regulate the ATPase activity of the helicase region of Serine protease NS3 chain.[UniProtKB:P17763] Peptide 2k: Functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter.[UniProtKB:P17763] Non-structural protein 4B: Inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway.[UniProtKB:P17763] Publication Abstract from PubMedThe rapid generation and modification of macrocyclic peptides in medicinal chemistry is an ever-growing area that can present various synthetic challenges. The reaction between N-terminal cysteine and 2-cyanoisonicotinamide is a new biocompatible click reaction that allows rapid access to macrocyclic peptides. Importantly, 2-cyanoisonicotinamide can be attached to different linkers directly during solid-phase peptide synthesis. The synthesis involves only commercially available precursors, allowing for a fully automated process. We demonstrate the approach for four cyclic peptide ligands of the Zika virus protease NS2B-NS3. Although all peptides display the substrate recognition motif, the activity strongly depends on the linker length, with the shortest cyclization linker corresponding to highest activity (K (i) = 0.64 muM). The most active cyclic peptide displays affinity 78 times higher than that of its linear analogue. We solved a crystal structure of the proteolytically cleaved ligand and synthesized it by applying the presented chemistry to peptide ligation. 2-Cyanoisonicotinamide Conjugation: A Facile Approach to Generate Potent Peptide Inhibitors of the Zika Virus Protease.,Patil NA, Quek JP, Schroeder B, Morewood R, Rademann J, Luo D, Nitsche C ACS Med Chem Lett. 2021 Mar 31;12(5):732-737. doi: , 10.1021/acsmedchemlett.0c00657. eCollection 2021 May 13. PMID:34055219[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|