| Structural highlights
7e4r is a 6 chain structure with sequence from Bos taurus, Gallus gallus and Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Method: | X-ray diffraction, Resolution 2.597Å |
| Ligands: | , , , , , , |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
STMN4_RAT Exhibits microtubule-destabilizing activity.[1] [2] [3]
Publication Abstract from PubMed
Maytansinoids, the chemical derivatives of Maytansine, are commonly used as potent cytotoxic payloads in antibody-drug conjugates (ADC). Structure-activity-relationship studies had identified the C3 ester side chain as a critical element for antitumor activity of maytansinoids. The maytansinoids bearing the methyl group at C3 position with D configuration were about 100 to 400-fold less cytotoxic than their corresponding L-epimers toward various cell lines. The detailed mechanism of how chirality affects the anticancer activity remains elusive. In this study, we determined the high-resolution crystal structure of tubulin in complex with maytansinol, L-DM1-SMe and D-DM1-SMe. And we found the carbonyl oxygen atom of the ester moiety and the tail thiomethyl group at C3 side chain of L-DM1-SMe form strong intramolecular interaction with the hydroxyl at position 9 and the benzene ring, respectively, fixing the bioactive conformation and enhancing the binding affinity. Additionally, ligand-based and structure-based virtually screening methods were used to screen the commercially macrocyclic compounds library, and 15 macrocyclic structures were picketed out as putatively new maytansine-site inhibitors. Our study provides a possible strategy for the rational discovery of next-generation maytansine site inhibitors.
C3 ester side chain plays a pivotal role in the antitumor activity of Maytansinoids.,Li W, Huang M, Li Y, Xia A, Tan L, Zhang Z, Wang Y, Yang J Biochem Biophys Res Commun. 2021 Aug 20;566:197-203. doi: , 10.1016/j.bbrc.2021.05.071. Epub 2021 Jun 15. PMID:34144258[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Nakao C, Itoh TJ, Hotani H, Mori N. Modulation of the stathmin-like microtubule destabilizing activity of RB3, a neuron-specific member of the SCG10 family, by its N-terminal domain. J Biol Chem. 2004 May 28;279(22):23014-21. Epub 2004 Mar 22. PMID:15039434 doi:http://dx.doi.org/10.1074/jbc.M313693200
- ↑ Gavet O, El Messari S, Ozon S, Sobel A. Regulation and subcellular localization of the microtubule-destabilizing stathmin family phosphoproteins in cortical neurons. J Neurosci Res. 2002 Jun 1;68(5):535-50. PMID:12111843 doi:http://dx.doi.org/10.1002/jnr.10234
- ↑ Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004 Mar 11;428(6979):198-202. PMID:15014504 doi:http://dx.doi.org/10.1038/nature02393
- ↑ Li W, Huang M, Li Y, Xia A, Tan L, Zhang Z, Wang Y, Yang J. C3 ester side chain plays a pivotal role in the antitumor activity of Maytansinoids. Biochem Biophys Res Commun. 2021 Aug 20;566:197-203. PMID:34144258 doi:10.1016/j.bbrc.2021.05.071
|