8z46
From Proteopedia
SARS-CoV-2 3CL protease (3CL pro) in complex with a novel inhibitor
Structural highlights
FunctionR1A_SARS2 Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein.[UniProtKB:P0C6X7] Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response.[UniProtKB:P0C6X7] May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.[UniProtKB:P0C6X7] Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Participates together with nsp4 in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3. Prevents also host NF-kappa-B signaling.[UniProtKB:P0C6X7] Participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication.[UniProtKB:P0C6X7] Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Also able to bind an ADP-ribose-1-phosphate (ADRP).[UniProtKB:P0C6X7] Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] May participate in viral replication by acting as a ssRNA-binding protein.[UniProtKB:P0C6X7] Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.[UniProtKB:P0C6X7] Publication Abstract from PubMedThe COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CL(pro), Nsp5) and the papain-like protease (PL(pro)) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of LU9, a nonpeptide 3CL(pro) inhibitor with an IC(50) of 0.34 muM, and LU10, whose crystal structure showed a distinct binding mode within the 3CL(pro) active site. The X-ray cocrystal structure of SARS-CoV-2 PL(pro) in complex with XD5 uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor XJ5 achieved a potency of 0.12 muM following comprehensive structure-activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies. Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors.,Wang X, Xiong L, Zhu Y, Liu S, Zhao W, Wu X, Seydimemet M, Li L, Ding P, Lin X, Liu J, Wang X, Duan Z, Lu W, Suo Y, Cui M, Yue J, Jin R, Zheng M, Xu Y, Mei L, Hu H, Lu X J Am Chem Soc. 2024 Dec 11;146(49):33983-33996. doi: 10.1021/jacs.4c12992. Epub , 2024 Nov 22. PMID:39574309[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|