| Structural highlights
Function
KEAP1_MOUSE Retains NFE2L2/NRF2 in the cytosol. Functions as substrate adapter protein for the E3 ubiquitin ligase complex formed by CUL3 and RBX1. Targets NFE2L2/NRF2 for ubiquitination and degradation by the proteasome, thus resulting in the suppression of its transcriptional activity and the repression of antioxidant response element-mediated detoxifying enzyme gene expression. May also retain BPTF in the cytosol. Targets PGAM5 for ubiquitination and degradation by the proteasome (By similarity).[1] [2]
Publication Abstract from PubMed
Inhibition of the protein-protein interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as an attractive approach for treating oxidative stress-related diseases. Here, we present a new series of noncovalent Keap1-Nrf2 inhibitors developed by a conformational restriction strategy of our fluorenone-based compounds previously identified by fragment-based drug discovery. The design was guided by X-ray cocrystal structures, and the subsequent optimization process aimed at improving affinity, cellular activity, and metabolic stability. From the noncyclic compound 7 (K(i) = 2.9 muM), a new series of tetrahydroisoquinoline-based Keap1 inhibitors with up to 223-fold improvement in binding affinity (57, K(i) = 13 nM), better metabolic stability, and enhanced cellular activity was obtained. In addition, the compounds showed selectivity for the Keap1 Kelch domain across a panel of 15 homologous proteins. We thereby demonstrate the utility of cyclic rigidification in the design of potent and more drug-like Keap1-Nrf2 inhibitors.
Structure-Guided Conformational Restriction Leading to High-Affinity, Selective, and Cell-Active Tetrahydroisoquinoline-Based Noncovalent Keap1-Nrf2 Inhibitors.,Qin Y, Poulsen C, Narayanan D, Chan CB, Chen X, Montes BR, Tran KT, Mukminova E, Lin C, Gajhede M, Bullock AN, Olagnier D, Bach A J Med Chem. 2024 Oct 17. doi: 10.1021/acs.jmedchem.4c01221. PMID:39418396[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76-86. PMID:9887101
- ↑ McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003 Jun 13;278(24):21592-600. Epub 2003 Apr 7. PMID:12682069 doi:10.1074/jbc.M300931200
- ↑ Qin Y, Poulsen C, Narayanan D, Chan CB, Chen X, Montes BR, Tran KT, Mukminova E, Lin C, Gajhede M, Bullock AN, Olagnier D, Bach A. Structure-Guided Conformational Restriction Leading to High-Affinity, Selective, and Cell-Active Tetrahydroisoquinoline-Based Noncovalent Keap1-Nrf2 Inhibitors. J Med Chem. 2024 Oct 17. PMID:39418396 doi:10.1021/acs.jmedchem.4c01221
|