9gfc
From Proteopedia
HDM2 complexed with stapled peptide-like ligand
Structural highlights
DiseaseMDM2_HUMAN Note=Seems to be amplified in certain tumors (including soft tissue sarcomas, osteosarcomas and gliomas). A higher frequency of splice variants lacking p53 binding domain sequences was found in late-stage and high-grade ovarian and bladder carcinomas. Four of the splice variants show loss of p53 binding. FunctionMDM2_HUMAN E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Publication Abstract from PubMedPeptide stapling has emerged as a versatile approach in drug discovery to reinforce secondary structure elements especially alpha-helices and improve properties of linear bioactive peptides. Inspired by the prevalence of arginine in protein-protein and protein-DNA interfaces, we investigated guanidinium-stapling as a means to constrain helical peptides. Guanidinium stapling was readily achieved on solid support, utilizing two orthogonally protected lysine or unatural alpha-amino acid residues with an amino function. This method allows for easy modulation of the nature and size of the staple as well as helix propensity. Evaluating a set of guanidinium-stapled peptides for their interaction with different protein targets identified several binders with increased target affinity. X-ray structure determination of four complexes revealed that all stapled peptides adopt a helical conformation upon protein binding. Notably, the disubstituted guanidinium generally exhibits a distinct cis/trans conformation and, in one instance, retains a conserved hydrogen bond with the protein surface. By identifying, for the first time, the guanidinium moiety as an effective helical peptide stapling group, this research significantly expands the repertoire of alpha-helix stapling techniques for the creation of useful protein mimics. Guanidinium-Stapled Helical Peptides for Targeting Protein-Protein Interactions.,Perdriau C, Luton A, Zimmeter K, Neuville M, Saragaglia C, Peluso-Iltis C, Osz J, Kauffmann B, Collie GW, Rochel N, Guichard G, Pasco M Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202416348. doi: , 10.1002/anie.202416348. Epub 2025 Jan 13. PMID:39714600[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Homo sapiens | Large Structures | Synthetic construct | Collie G | Guichard G | Kauffmann B | Luton A | Neuville M | Osz J | Pasco M | Peluso-lltis C | Perdriau C | Rochel N | Saragaglia C | Zimmeter K