9mer
From Proteopedia
Structure of H1H5:FluA20 Chimeric Influenza HA Complex
Structural highlights
Publication Abstract from PubMedAntigenic variability among influenza virus strains poses a significant challenge to developing broadly protective, long-lasting vaccines. Current annual vaccines target specific strains, requiring accurate prediction for effective neutralization. Despite sequence diversity across phylogenetic groups, the hemagglutinin (HA) head domain's structure remains highly conserved. Utilizing this conservation, we designed cross-group chimeric HAs that combine antigenic surfaces from distant strains. By structure-guided transplantation of receptor-binding site (RBS) residues, we displayed an H3 RBS on an H1 HA scaffold. These chimeric immunogens elicit cross-group polyclonal responses capable of neutralizing both base and distal strains. Additionally, the chimeras integrate heterotrimeric immunogens, enhancing modular vaccine design. This approach enables the inclusion of diverse strain segments to generate broad polyclonal responses. In the future, such modular immunogens may serve as tools for evaluating immunodominance and refining immunization strategies, offering potential to bridge and enhance immune responses in individuals with pre-existing immunity. This strategy holds promise for advancing universal influenza vaccine development. Structure-based Design of Chimeric Influenza Hemagglutinins to Elicit Cross-group Immunity.,Castro KM, Ayardulabi R, Wehrle S, Cui H, Georgeon S, Schmidt J, Xiao S, Seraj N, Harshbarger W, Mallett CP, Vassilev V, Saelens X, Correia BE bioRxiv [Preprint]. 2025 Feb 23:2024.12.17.628867. doi: , 10.1101/2024.12.17.628867. PMID:40027756[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|