| Structural highlights
3c9e is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Ligands: | , , , |
| Gene: | CTSK, CTSO, CTSO2 (HUMAN) |
| Activity: | Cathepsin K, with EC number 3.4.22.38 |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
[CATK_HUMAN] Defects in CTSK are the cause of pycnodysostosis (PKND) [MIM:265800]. PKND is an autosomal recessive osteochondrodysplasia characterized by osteosclerosis and short stature.[1] [2] [3] [4]
Function
[CATK_HUMAN] Closely involved in osteoclastic bone resorption and may participate partially in the disorder of bone remodeling. Displays potent endoprotease activity against fibrinogen at acid pH. May play an important role in extracellular matrix degradation.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Cathepsin K is the major collagenolytic enzyme produced by bone-resorbing osteoclasts. We showed earlier that the unique triple-helical collagen-degrading activity of cathepsin K depends on the formation of complexes with bone-or cartilage-resident glycosaminoglycans, such as chondroitin 4-sulfate (C4-S). Here, we describe the crystal structure of a 1:n complex of cathepsin K:C4-S inhibited by E64 at a resolution of 1.8 A. The overall structure reveals an unusual "beads-on-a-string"-like organization. Multiple cathepsin K molecules bind specifically to a single cosine curve-shaped strand of C4-S with each cathepsin K molecule interacting with three disaccharide residues of C4-S. One of the more important sets of interactions comes from a single turn of helix close to the N terminus of the proteinase containing a basic amino acid triplet (Arg8-Lys9-Lys10) that forms multiple hydrogen bonds either to the caboxylate or to the 4-sulfate groups of C4-S. Altogether, the binding sites with C4-S are located in the R-domain of cathepsin K and are distant from its active site. This explains why the general proteolytic activity of cathepsin K is not affected by the binding of chondroitin sulfate. Biochemical analyses of cathepsin K and C4-S mixtures support the presence of a 1:n complex in solution; a dissociation constant, K(d), of about 10 nM was determined for the interaction between cathepsin K and C4-S.
The crystal and molecular structures of a cathepsin K:chondroitin sulfate complex.,Li Z, Kienetz M, Cherney MM, James MN, Bromme D J Mol Biol. 2008 Oct 31;383(1):78-91. Epub 2008 Jul 22. PMID:18692071[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996 Aug 30;273(5279):1236-8. PMID:8703060
- ↑ Gelb BD, Willner JP, Dunn TM, Kardon NB, Verloes A, Poncin J, Desnick RJ. Paternal uniparental disomy for chromosome 1 revealed by molecular analysis of a patient with pycnodysostosis. Am J Hum Genet. 1998 Apr;62(4):848-54. PMID:9529353 doi:S0002-9297(07)60977-X
- ↑ Ho N, Punturieri A, Wilkin D, Szabo J, Johnson M, Whaley J, Davis J, Clark A, Weiss S, Francomano C. Mutations of CTSK result in pycnodysostosis via a reduction in cathepsin K protein. J Bone Miner Res. 1999 Oct;14(10):1649-53. PMID:10491211
- ↑ Haagerup A, Hertz JM, Christensen MF, Binderup H, Kruse TA. Cathepsin K gene mutations and 1q21 haplotypes in at patients with pycnodysostosis in an outbred population. Eur J Hum Genet. 2000 Jun;8(6):431-6. PMID:10878663 doi:10.1038/sj.ejhg.5200481
- ↑ Li Z, Kienetz M, Cherney MM, James MN, Bromme D. The crystal and molecular structures of a cathepsin K:chondroitin sulfate complex. J Mol Biol. 2008 Oct 31;383(1):78-91. Epub 2008 Jul 22. PMID:18692071 doi:10.1016/j.jmb.2008.07.038
|