7crb
From Proteopedia
Cryo-EM structure of plant NLR RPP1 LRR-ID domain in complex with ATR1
Structural highlights
FunctionATR1_HYAAE Secreted effector that acts as an elicitor of hypersensitive response (HR) specifically on plants carrying both defense protein RPP1 from several ecotypes including RPP1-NdA, RPP1-WsB, RPP1-EstA and RPP1-ZdrA.[1] [2] [3] [4] [5] [6] Publication Abstract from PubMedDirect or indirect recognition of pathogen-derived effectors by plant nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) initiates innate immune responses. The Hyaloperonospora arabidopsidis effector ATR1 activates the N-terminal Toll-interleukin-1 receptor (TIR) domain of Arabidopsis NLR RPP1. We report a cryo-electron microscopy structure of RPP1 bound by ATR1. The structure reveals a C-terminal jelly roll/Ig-like domain (C-JID) for specific ATR1 recognition. Biochemical and functional analyses show that ATR1 binds to the C-JID and the LRRs to induce an RPP1 tetrameric assembly required for nicotinamide adenine dinucleotide hydrolase (NADase) activity. RPP1 tetramerization creates two potential active sites, each formed by an asymmetric TIR homodimer. Our data define the mechanism of direct effector recognition by a plant NLR leading to formation of a signaling-active holoenzyme. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme.,Ma S, Lapin D, Liu L, Sun Y, Song W, Zhang X, Logemann E, Yu D, Wang J, Jirschitzka J, Han Z, Schulze-Lefert P, Parker JE, Chai J Science. 2020 Dec 4;370(6521). pii: 370/6521/eabe3069. doi:, 10.1126/science.abe3069. PMID:33273071[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Arabidopsis thaliana | Hyaloperonospora arabidopsidis Emoy2 | Large Structures | Chai JJ | Han ZF | Jirschitzka J | Lapin D | Liu L | Logemann E | Ma SC | Parker JE | SchulzeLefert P | Song W | Sun Y | Wang J | Yu DL | Zhang XX