Structural highlights
Function
RT22_YEAST Mitochondrial ribosome (mitoribosome) assembly factor (PubMed:36482135, PubMed:38199006). Binds at the interface of the head and body domains of the mitochondrial small ribosomal subunit (mt-SSU), occluding the mRNA channel and preventing compaction of the head domain towards the body (PubMed:36482135). Probable inactive methyltransferase: retains the characteristic folding and ability to bind S-adenosyl-L-methionine, but it probably lost its methyltransferase activity (By similarity).[UniProtKB:Q9H7H0][1] [2]
Publication Abstract from PubMed
Mitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism(1). Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly. Furthermore, this series of intermediates from two species with divergent mitoribosomal architecture uncovers both conserved principles and species-specific adaptations that govern the maturation of mitoribosomal small subunits in eukaryotes. By revealing the dynamic interplay between assembly factors, mitoribosomal proteins and rRNA that are required to generate functional subunits, our structural analysis provides a vignette for how molecular complexity and diversity can evolve in large ribonucleoprotein assemblies.
Principles of mitoribosomal small subunit assembly in eukaryotes.,Harper NJ, Burnside C, Klinge S Nature. 2023 Feb;614(7946):175-181. doi: 10.1038/s41586-022-05621-0. Epub 2022 , Dec 8. PMID:36482135[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Harper NJ, Burnside C, Klinge S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature. 2022 Dec 8. doi: 10.1038/s41586-022-05621-0. PMID:36482135 doi:http://dx.doi.org/10.1038/s41586-022-05621-0
- ↑ Ast T, Itoh Y, Sadre S, McCoy JG, Namkoong G, Wengrod JC, Chicherin I, Joshi PR, Kamenski P, Suess DLM, Amunts A, Mootha VK. METTL17 is an Fe-S cluster checkpoint for mitochondrial translation. Mol Cell. 2024 Jan 18;84(2):359-374.e8. PMID:38199006 doi:10.1016/j.molcel.2023.12.016
- ↑ Harper NJ, Burnside C, Klinge S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature. 2022 Dec 8. doi: 10.1038/s41586-022-05621-0. PMID:36482135 doi:http://dx.doi.org/10.1038/s41586-022-05621-0