1awo
From Proteopedia
THE SOLUTION NMR STRUCTURE OF ABL SH3 AND ITS RELATIONSHIP TO SH2 IN THE SH(32) CONSTRUCT, 20 STRUCTURES
Structural highlights
DiseaseABL1_HUMAN Note=A chromosomal aberration involving ABL1 is a cause of chronic myeloid leukemia. Translocation t(9;22)(q34;q11) with BCR. The translocation produces a BCR-ABL found also in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). FunctionABL1_HUMAN Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9. Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 acts also as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: The Src homology domains, SH3 and SH2, of Abl protein tyrosine kinase regulate enzymatic activity in vivo. Abl SH3 suppresses kinase activity, whereas Abl SH2 is required for the transforming activity of the activated form of Abl. We expect that the solution structures of Abl SH3, Abl SH2 and Abl SH(32) (a dual domain comprising SH3 and SH2 subdomains) will contribute to a structural basis for understanding the mechanism of the Abl 'regulatory apparatus'. RESULTS: We present the solution structure of the free Abl SH3 domain and a structural characterization of the Abl regulatory apparatus, the SH(32) dual domain. The solution structure of Abl SH3 was determined using multidimensional double resonance NMR spectroscopy. It consists of two antiparallel beta sheets packed orthogonally, an arrangement first shown in spectrin SH3. Compared with the crystal structure of the Abl SH3 complexed with a natural ligand, there is no significant difference in overall folding pattern. The structure of the Abl SH(32) dual domain was characterized by NMR spectroscopy using the 1H and 15N resonance assignment of Abl SH3 and Abl SH2. On the basis of the high degree of similarity in chemical shifts and hydrogen/deuterium exchange pattern for the individual domains of SH3 and SH2 compared with those of the SH(32) dual domain, a structural model of the Abl SH(32) regulatory apparatus is suggested. This model is in good agreement with the ligand-binding characteristics of Abl SH3, SH2 and SH(32). The binding constants for isolated SH3 and SH2 domains when binding to natural ligands, measured by intrinsic fluorescence quenching, do not differ significantly from the constants of these domains within SH(32). CONCLUSION: The solution structures of free Abl SH3 and Abl SH2, and the structural model of Abl SH(32), provide information about the overall topology of these modular domains. The structural model of Abl SH(32), a monomer, consists of the SH3 and SH2 domains connected by a flexible linker. Sites of ligand binding for the two subdomains are independent. The solution structure of Abl SH3, and its relationship to SH2 in the SH(32) construct.,Gosser YQ, Zheng J, Overduin M, Mayer BJ, Cowburn D Structure. 1995 Oct 15;3(10):1075-86. PMID:8590002[23] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|