1fzc
From Proteopedia
CRYSTAL STRUCTURE OF FRAGMENT DOUBLE-D FROM HUMAN FIBRIN WITH TWO DIFFERENT BOUND LIGANDS
Structural highlights
DiseaseFIBA_HUMAN Defects in FGA are a cause of congenital afibrinogenemia (CAFBN) [MIM:202400. This is a rare autosomal recessive disorder characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=The majority of cases of afibrinogenemia are due to truncating mutations. Variations in position Arg-35 (the site of cleavage of fibrinopeptide a by thrombin) leads to alpha-dysfibrinogenemias. Defects in FGA are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1] FunctionFIBA_HUMAN Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedFactor XIII-cross-linked fragment D (double-D) from human fibrin was crystallized in the presence of two different peptide ligands and the X-ray structure determined at 2.3 A. The peptide Gly-Pro-Arg-Pro-amide, which is an analogue of the knob exposed by the thrombin-catalyzed removal of fibrinopeptide A, was found to reside in the gamma-chain holes, and the peptide Gly-His-Arg-Pro-amide, which corresponds to the beta-chain knob, was found in the homologous beta-chain holes. The structure shows for the first time that the beta-chain knob does indeed bind to a homologous hole on the beta-chain. The gamma- and beta-chain holes are structurally very similar, and it is remarkable they are able to distinguish between these two peptides that differ by a single amino acid. Additionally, we have found that the beta-chain domain, like its gamma-chain counterpart, binds calcium. Crystal structure of fragment double-D from human fibrin with two different bound ligands.,Everse SJ, Spraggon G, Veerapandian L, Riley M, Doolittle RF Biochemistry. 1998 Jun 16;37(24):8637-42. PMID:9628725[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|