1i7a
From Proteopedia
EVH1 DOMAIN FROM MURINE HOMER 2B/VESL 2
Structural highlights
FunctionHOME2_MOUSE Postsynaptic density scaffolding protein. Binds and cross-links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER-associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2. Isoforms can be differently regulated and may play an important role in maintaining the plasticity at glutamatergic synapses. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCellular activities controlled by signal transduction processes such as cell motility and cell growth depend on the tightly regulated assembly of multiprotein complexes. Adapter proteins that specifically interact with their target proteins are key components required for the formation of these assemblies. Ena/VASP-homology 1 (EVH1) domains are small constituents of large modular proteins involved in microfilament assembly that specifically recognize proline-rich regions. EVH1 domain-containing proteins are present in neuronal cells, like the Homer/Vesl protein family that is involved in memory-generating processes. Here, we describe the crystal structure of the murine EVH1 domain of Vesl 2 at 2.2 A resolution. The small globular protein consists of a seven-stranded antiparallel beta-barrel with a C-terminal alpha-helix packing alongside the barrel. A shallow groove running parallel with beta-strand VI forms an extended peptide-binding site. Using peptide library screenings, we present data that demonstrate the high affinity of the Vesl 2 EVH1 domain towards peptide sequences containing a proline-rich core sequence (PPSPF) that requires additional charged amino acid residues on either side for specific binding. Our functional data, substantiated by structural data, demonstrate that the ligand-binding of the Vesl EVH1 domain differs from the interaction characteristics of the previously examined EVH1 domains of the Evl/Mena proteins. Analogous to the Src homology 3 (SH3) domains that bind their cognate ligands in two distinct directions, we therefore propose the existence of two distinct classes of EVH1 domains. The N-terminal domain of Homer/Vesl is a new class II EVH1 domain.,Barzik M, Carl UD, Schubert WD, Frank R, Wehland J, Heinz DW J Mol Biol. 2001 May 25;309(1):155-69. PMID:11491285[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|