1lsp
From Proteopedia
THE CRYSTAL STRUCTURE OF A BULGECIN-INHIBITED G-TYPE LYSOZYME FROM THE EGG-WHITE OF THE AUSTRALIAN BLACK SWAN. A COMPARISON OF THE BINDING OF BULGECIN TO THREE MURAMIDASES
Structural highlights
FunctionEvolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBulgecin A, a bacterial metabolite, has been shown to bind in the active-site groove of the chicken-type lysozyme from the rainbow trout (RBTL) and in the lysozyme-like C-terminal domain, of a soluble lytic transglycosylase (C-SLT) from Escherichia coli. These enzymes are muramidases that cleave the glycosidic bonds in the glycan strands of the murein polymer. Here we report the crystal structure of a complex between the goose-type lysozyme from the egg white of the Australian black swan (SEWL) and bulgecin A at 2.45 A resolution. As is the case for the C-SLT/bulgecin and RBTL/bulgecin complexes, the ligand binds with the N-acetylglucosamine ring in subsite C and the proline moiety in site D where it interacts with the catalytic glutamic acid. The taurine residue interacts with the beta-sheet region. Comparisons of the three buigecin complexes show that the inhibitor has the same binding mode to the muramidases with similar protein-ligand interactions, particularly for SEWL and RBTL. From our results, it seems likely that bulgecin, in general, inhibits enzymes with lysozyme-like domains and thus might represent a novel class of natural antibiotics that act on murein-degrading rather than murein-synthesizing enzymes. Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases.,Karlsen S, Hough E, Rao ZH, Isaacs NW Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):105-14. PMID:15299731[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|