1nmb
From Proteopedia
THE STRUCTURE OF A COMPLEX BETWEEN THE NC10 ANTIBODY AND INFLUENZA VIRUS NEURAMINIDASE AND COMPARISON WITH THE OVERLAPPING BINDING SITE OF THE NC41 ANTIBODY
Structural highlights
FunctionNRAM_I84A1 Catalyzes the removal of terminal sialic acid residues from viral and cellular glycoconjugates. Cleaves off the terminal sialic acids on the glycosylated HA during virus budding to facilitate virus release. Additionally helps virus spread through the circulation by further removing sialic acids from the cell surface. These cleavages prevent self-aggregation and ensure the efficient spread of the progeny virus from cell to cell. Otherwise, infection would be limited to one round of replication. Described as a receptor-destroying enzyme because it cleaves a terminal sialic acid from the cellular receptors. May facilitate viral invasion of the upper airways by cleaving the sialic acid moities on the mucin of the airway epithelial cells. Likely to plays a role in the budding process through its association with lipid rafts during intracellular transport. May additionally display a raft-association independent effect on budding. Plays a role in the determination of host range restriction on replication and virulence. Sialidase activity in late endosome/lysosome traffic seems to enhance virus replication. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: While it is well known that different antibodies can be produced against a particular antigen, and even against a particular site on an antigen, up until now there have been no structural studies of cross-reacting antibodies of this type. One antibody-antigen complex whose structure is known is that of the influenza virus antigen, neuraminidase, in complex with the NC41 antibody. Another anti-neuraminidase antibody, NC10, binds to an overlapping site on the antigen. The structure of the complex formed by this antibody with neuraminidase is described here and compared with the NC41-containing complex. RESULTS: The crystal structure of the NC10 Fab-neuraminidase complex has been refined to a nominal resolution of 2.5A. Approximately 80% of the binding site of the NC10 antibody on neuraminidase overlaps with that of the NC41 antibody. The epitope residues of neuraminidase are often engaged in quite different interactions with the two antibodies. Although the NC10 and NC41 antibodies have identical amino acid sequences within the first complementarity determining region of their heavy chains, this is not the basis of the cross-reaction. CONCLUSIONS: The capacity of two different proteins to bind to the same target structure on a third protein need not be based on the existence of identical or homologous amino acid sequences within those proteins. As we have demonstrated, amino acid residues on the common target structure may be in quite different chemical environments, and may also adopt different conformations within two protein-protein complexes. The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody.,Malby RL, Tulip WR, Harley VR, McKimm-Breschkin JL, Laver WG, Webster RG, Colman PM Structure. 1994 Aug 15;2(8):733-46. PMID:7994573[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|