1sv3

From Proteopedia

Jump to: navigation, search

Structure of the complex formed between Phospholipase A2 and 4-methoxybenzoic acid at 1.3A resolution.

Structural highlights

1sv3 is a 1 chain structure with sequence from Daboia russelii pulchella. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.35Å
Ligands:ANN, SO4
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PA2B8_DABRR Snake venom phospholipase A2 (PLA2) that shows weak neurotoxicity and medium anticoagulant effects by binding to factor Xa (F10) and inhibiting the prothrombinase activity (IC(50) is 130 nM) (PubMed:18062812). It also damages vital organs such as lung, liver and kidney, displays edema-inducing activities when injected into the foot pads of mice and induces necrosis of muscle cells when injected into the thigh muscle. Has a low enzymatic activity. PLA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Secretory low molecular weight phospholipase A(2)s (PLA(2)s) are believed to be involved in the release of arachidonic acid, a precursor for the biosynthesis of pro-inflammatory eicosanoids. Therefore, the specific inhibitors of these enzymes may act as potent anti-inflammatory agents. Similarly, the compounds with known anti-inflammatory properties should act as specific inhibitors. Two plant compounds, (a) anisic acid (4-methoxy benzoic acid) and (b) atropine (8-methyl-8-azabicyclo oct-3-hydroxy-2-phenylpropanoate), have been used in various inflammatory disorders. Both compounds (a) and (b) have been found to inhibit PLA(2) activity having binding constants of 4.5 x 10(-5) M and 2.1 x 10(-8) M, respectively. A group IIA PLA(2) was isolated and purified from the venom of Daboia russelli pulchella (DRP) and its complexes were made with anisic acid and atropine. The crystal structures of the two complexes (i) and (ii) of PLA(2) with compounds (a) and (b) have been determined at 1.3 and 1.2 A resolutions, respectively. The high-quality observed electron densities for the two compounds allowed the accurate determinations of their atomic positions. The structures revealed that these compounds bound to the enzyme at the substrate - binding cleft and their positions were stabilized by networks of hydrogen bonds and hydrophobic interactions. The most characteristic interactions involving Asp 49 and His 48 were clearly observed in both complexes, although the residues that formed hydrophobic interactions with these compounds were not identical because their positions did not exactly superimpose in the large substrate-binding hydrophobic channel. Owing to a relatively small size, the structure of anisic acid did not alter upon binding to PLA(2), while that of atropine changed significantly when compared with its native crystal structure. The conformation of the protein also did not show notable changes upon the bindings of these ligands. The mode of binding of anisic acid to the present group II PLA(2) is almost identical to its binding with bovine pancreatic PLA(2) of group I. On the other hand, the binding of atropine to PLA(2) is similar to that of another plant alkaloid aristolochic acid.

Crystal structures of the complexes of a group IIA phospholipase A2 with two natural anti-inflammatory agents, anisic acid, and atropine reveal a similar mode of binding.,Singh N, Jabeen T, Pal A, Sharma S, Perbandt M, Betzel C, Singh TP Proteins. 2006 Jul 1;64(1):89-100. PMID:16596639[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
reviews cite this structure
No citations found

See Also

References

  1. Faure G, Gowda VT, Maroun RC. Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics. BMC Struct Biol. 2007 Dec 6;7:82. PMID:18062812 doi:http://dx.doi.org/10.1186/1472-6807-7-82
  2. Kasturi S, Rudrammaji LM, Gowda TV. Antibodies to a phospholipase A2 from Vipera russelli selectively neutralize venom neurotoxicity. Immunology. 1990 Jun;70(2):175-80. PMID:2115497
  3. Tsai IH, Lu PJ, Su JC. Two types of Russell's viper revealed by variation in phospholipases A2 from venom of the subspecies. Toxicon. 1996 Jan;34(1):99-109. PMID:8835338
  4. Singh N, Jabeen T, Pal A, Sharma S, Perbandt M, Betzel C, Singh TP. Crystal structures of the complexes of a group IIA phospholipase A2 with two natural anti-inflammatory agents, anisic acid, and atropine reveal a similar mode of binding. Proteins. 2006 Jul 1;64(1):89-100. PMID:16596639 doi:10.1002/prot.20970

Contents


PDB ID 1sv3

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools