1zc1
From Proteopedia
Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites
Structural highlights
FunctionUFD1_YEAST Functions at a post-ubiquitation step in the ubiquitin fusion degradation (UFD) pathway. Has a role in the endoplasmic reticulum-associated degradation (ERAD) pathway. Required for the proteasome-dependent processing/activation of MGA2 and SPT23 transcription factors leading to the subsequent expression of OLE1. Has an additional role in the turnover of OLE1 where it targets ubiquitinated OLE1 and other proteins to the ERAD.[1] [2] [3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedUfd1 mediates ubiquitin fusion degradation by association with Npl4 and Cdc48/p97. The Ufd1-ubiquitin interaction is essential for transfer of substrates to the proteasome. However, the mechanism and specificity of ubiquitin recognition by Ufd1 are poorly understood due to the lack of detailed structural information. Here, we present the solution structure of yeast Ufd1 N domain and show that it has two distinct binding sites for mono- and polyubiquitin. The structure exhibits striking similarities to the Cdc48/p97 N domain. It contains the double-psi beta barrel motif, which is thus identified as a ubiquitin binding domain. Significantly, Ufd1 shows higher affinity toward polyubiquitin than monoubiquitin, attributable to the utilization of separate binding sites with different affinities. Further studies revealed that the Ufd1-ubiquitin interaction involves hydrophobic contacts similar to those in well-characterized ubiquitin binding proteins. Our results provide a structural basis for a previously proposed synergistic binding of polyubiquitin by Cdc48/p97 and Ufd1. Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites.,Park S, Isaacson R, Kim HT, Silver PA, Wagner G Structure. 2005 Jul;13(7):995-1005. PMID:16004872[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|