2axt
From Proteopedia
Crystal Structure of Photosystem II from Thermosynechococcus elongatus
Structural highlights
FunctionPSBA1_THEVB Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbD) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors.[HAMAP-Rule:MF_01379][1] [2] [3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedOxygenic photosynthesis in plants, algae and cyanobacteria is initiated at photosystem II, a homodimeric multisubunit protein-cofactor complex embedded in the thylakoid membrane. Photosystem II captures sunlight and powers the unique photo-induced oxidation of water to atmospheric oxygen. Crystallographic investigations of cyanobacterial photosystem II have provided several medium-resolution structures (3.8 to 3.2 A) that explain the general arrangement of the protein matrix and cofactors, but do not give a full picture of the complex. Here we describe the most complete cyanobacterial photosystem II structure obtained so far, showing locations of and interactions between 20 protein subunits and 77 cofactors per monomer. Assignment of 11 beta-carotenes yields insights into electron and energy transfer and photo-protection mechanisms in the reaction centre and antenna subunits. The high number of 14 integrally bound lipids reflects the structural and functional importance of these molecules for flexibility within and assembly of photosystem II. A lipophilic pathway is proposed for the diffusion of secondary plastoquinone that transfers redox equivalents from photosystem II to the photosynthetic chain. The structure provides information about the Mn4Ca cluster, where oxidation of water takes place. Our study uncovers near-atomic details necessary to understand the processes that convert light to chemical energy. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II.,Loll B, Kern J, Saenger W, Zouni A, Biesiadka J Nature. 2005 Dec 15;438(7070):1040-4. PMID:16355230[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|